These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35427326)

  • 21. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.
    Liu J; Zhao X; Gong R; Wu T; Gong C; Shao X
    Opt Express; 2015 Oct; 23(21):27343-53. PubMed ID: 26480396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crosstalk-free all-optical switching enabled by Fano resonance in a multi-mode photonic crystal nanocavity.
    Saudan Q; Bekele DA; Dong G; Yu Y; Yvind K; Mørk J; Galili M
    Opt Express; 2022 Feb; 30(5):7457-7466. PubMed ID: 35299507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extraordinary optical transmission enhanced by nanofocusing.
    Søndergaard T; Bozhevolnyi SI; Novikov SM; Beermann J; Devaux E; Ebbesen TW
    Nano Lett; 2010 Aug; 10(8):3123-8. PubMed ID: 20698626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array.
    Hu J; Shen M; Li Z; Li X; Liu G; Wang X; Kan C; Li Y
    Nanotechnology; 2017 May; 28(21):215205. PubMed ID: 28358302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single CA3 pyramidal cells trigger sharp waves in vitro by exciting interneurones.
    Bazelot M; Teleńczuk MT; Miles R
    J Physiol; 2016 May; 594(10):2565-77. PubMed ID: 26728572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array.
    Bao YJ; Peng RW; Shu DJ; Wang M; Lu X; Shao J; Lu W; Ming NB
    Phys Rev Lett; 2008 Aug; 101(8):087401. PubMed ID: 18764658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications.
    Liu F; Zhang X
    Biosens Bioelectron; 2015 Jun; 68():719-725. PubMed ID: 25679119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal.
    Liu Z; Hang J; Chen J; Yan Z; Tang C; Chen Z; Zhan P
    Opt Express; 2012 Apr; 20(8):9215-25. PubMed ID: 22513633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulating acoustic Fano resonance of self-collimated sound beams in two dimensional sonic crystals.
    Zhang T; Gao S; Cheng Y; Liu X
    Ultrasonics; 2019 Jan; 91():129-133. PubMed ID: 30107288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical vortices at Fano resonances.
    Xu Y; Miroshnichenko AE; Desyatnikov AS
    Opt Lett; 2012 Dec; 37(23):4985-7. PubMed ID: 23202112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays.
    Walsh GF; Dal Negro L
    Nano Lett; 2013 Jul; 13(7):3111-7. PubMed ID: 23800228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes.
    Peer A; Biswas R
    Nanoscale; 2016 Feb; 8(8):4657-66. PubMed ID: 26853881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths.
    Park MS; Bhattarai K; Kim DK; Kang SW; Kim JO; Zhou J; Jang WY; Noyola M; Urbas A; Ku Z; Lee SJ
    Opt Express; 2014 Dec; 22(24):30161-9. PubMed ID: 25606946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupled Fano resonators.
    Tu X; Mario LY; Mei T
    Opt Express; 2010 Aug; 18(18):18820-31. PubMed ID: 20940775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.
    Chang SH; Gray S; Schatz G
    Opt Express; 2005 Apr; 13(8):3150-65. PubMed ID: 19495214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.