These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35427438)

  • 1. Forward Genetic Screens of Human Glycosylation Pathways Using the GlycoGene CRISPR Library.
    Kelkar A; Groth T; Neelamegham S
    Curr Protoc; 2022 Apr; 2(4):e402. PubMed ID: 35427438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GlycoGene CRISPR-Cas9 lentiviral library to study lectin binding and human glycan biosynthesis pathways.
    Zhu Y; Groth T; Kelkar A; Zhou Y; Neelamegham S
    Glycobiology; 2021 Apr; 31(3):173-180. PubMed ID: 32776087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Suppressor Scanning for Systematic Discovery of Drug-Resistance Mutations.
    Ngan KC; Lue NZ; Lee C; Liau BB
    Curr Protoc; 2022 Dec; 2(12):e614. PubMed ID: 36541895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 and glycomics tools for
    Gas-Pascual E; Ichikawa HT; Sheikh MO; Serji MI; Deng B; Mandalasi M; Bandini G; Samuelson J; Wells L; West CM
    J Biol Chem; 2019 Jan; 294(4):1104-1125. PubMed ID: 30463938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid-Based Donor Templates for Nonviral CRISPR/Cas9-Mediated Gene Knock-In in Human T Cells.
    Senger K; Akhmetzyanova I; Haley B; Rutz S; Oh SA
    Curr Protoc; 2022 Sep; 2(9):e538. PubMed ID: 36130036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Mediated Gene Knockout in Cells and Tissues Using Lentivirus.
    Lu J; Wang S
    Curr Protoc; 2023 May; 3(5):e772. PubMed ID: 37222511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Genetic Regulators of Protein-Glycan Interactions with Genome-Wide CRISPR Screening.
    Krishnamoorthy V; Daly J; Wisnovsky S
    Curr Protoc; 2023 Jan; 3(1):e646. PubMed ID: 36695498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens.
    Wang T; Lander ES; Sabatini DM
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.top086892. PubMed ID: 26933254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol of CRISPR-Cas9 knockout screens for identifying ferroptosis regulators.
    Yang X; Duan S; Li Z; Wang Z; Kon N; Zhang Z; Gu W
    STAR Protoc; 2023 Dec; 4(4):102762. PubMed ID: 38048220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex Vivo Expansion and CRISPR-Cas9 Genome Editing of Primary Human Natural Killer Cells.
    Huang RS; Lai MC; Lin S
    Curr Protoc; 2021 Sep; 1(9):e246. PubMed ID: 34529358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable CRISPR-Cas9 chemical genetic screens in non-transformed human cells.
    Lin K; Chang YC; Marron Fernandez de Velasco E; Wickman K; Myers CL; Bielinsky AK
    STAR Protoc; 2022 Dec; 3(4):101675. PubMed ID: 36107744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Custom Pooled CRISPR Libraries for Genetic Dissection of Biological Pathways.
    Gulbranson DR
    Methods Mol Biol; 2022; 2473():333-347. PubMed ID: 35819774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral Packaging and Cell Culture for CRISPR-Based Screens.
    Wang T; Lander ES; Sabatini DM
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.prot090811. PubMed ID: 26933250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute.
    Wang B; Wang M; Zhang W; Xiao T; Chen CH; Wu A; Wu F; Traugh N; Wang X; Li Z; Mei S; Cui Y; Shi S; Lipp JJ; Hinterndorfer M; Zuber J; Brown M; Li W; Liu XS
    Nat Protoc; 2019 Mar; 14(3):756-780. PubMed ID: 30710114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic screening for potential therapeutic targets in osteosarcoma through a kinome-wide CRISPR-Cas9 library.
    Wu Y; Zhou L; Wang Z; Wang X; Zhang R; Zheng L; Kang T
    Cancer Biol Med; 2020 Aug; 17(3):782-794. PubMed ID: 32944406
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes.
    Ihry RJ; Salick MR; Ho DJ; Sondey M; Kommineni S; Paula S; Raymond J; Henry B; Frias E; Wang Q; Worringer KA; Ye C; Russ C; Reece-Hoyes JS; Altshuler RC; Randhawa R; Yang Z; McAllister G; Hoffman GR; Dolmetsch R; Kaykas A
    Cell Rep; 2019 Apr; 27(2):616-630.e6. PubMed ID: 30970262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model.
    Dabelsteen S; Pallesen EMH; Marinova IN; Nielsen MI; Adamopoulou M; Rømer TB; Levann A; Andersen MM; Ye Z; Thein D; Bennett EP; Büll C; Moons SJ; Boltje T; Clausen H; Vakhrushev SY; Bagdonaite I; Wandall HH
    Dev Cell; 2020 Sep; 54(5):669-684.e7. PubMed ID: 32710848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.