These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35427478)

  • 21. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation.
    Stair ER; Hicks LM
    Curr Opin Chem Biol; 2023 Dec; 77():102389. PubMed ID: 37776664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods to Analyze the Redox Reactivity of Plant Proteins.
    Al-Mohanna T; Popescu GV; Popescu SC
    Methods Mol Biol; 2022; 2526():161-179. PubMed ID: 35657519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox proteomics: identification of oxidatively modified proteins.
    Ghezzi P; Bonetto V
    Proteomics; 2003 Jul; 3(7):1145-53. PubMed ID: 12872215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes.
    Held JM; Gibson BW
    Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
    Lennicke C; Cochemé HM
    Mol Cell; 2021 Sep; 81(18):3691-3707. PubMed ID: 34547234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Introduction to the thematic minireview series on redox-active protein modifications and signaling.
    Banerjee R
    J Biol Chem; 2013 Sep; 288(37):26463. PubMed ID: 23861402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Probes for Redox Signaling and Oxidative Stress.
    Abo M; Weerapana E
    Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative Post-Translational Modifications: A Focus on Cysteine
    Bibli SI; Fleming I
    Antioxid Redox Signal; 2021 Dec; 35(18):1494-1514. PubMed ID: 34346251
    [No Abstract]   [Full Text] [Related]  

  • 33. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates.
    Turell L; Zeida A; Trujillo M
    Essays Biochem; 2020 Feb; 64(1):55-66. PubMed ID: 31919496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.
    Gutsche N; Zachgo S
    PLoS One; 2016; 11(4):e0153810. PubMed ID: 27128442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persulfide Signaling in Stress-Initiated Calmodulin Kinase Response.
    Takata T; Araki S; Tsuchiya Y; Watanabe Y
    Antioxid Redox Signal; 2020 Dec; 33(18):1308-1319. PubMed ID: 32460522
    [No Abstract]   [Full Text] [Related]  

  • 37. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein cysteine modifications: (1) medical chemistry for proteomics.
    Nagahara N; Matsumura T; Okamoto R; Kajihara Y
    Curr Med Chem; 2009; 16(33):4419-44. PubMed ID: 19835564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of cysteine residues as redox-sensitive regulatory switches.
    Barford D
    Curr Opin Struct Biol; 2004 Dec; 14(6):679-86. PubMed ID: 15582391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes.
    Zaccarin M; Falda M; Roveri A; Bosello-Travain V; Bordin L; Maiorino M; Ursini F; Toppo S
    Free Radic Biol Med; 2014 Jun; 71():90-98. PubMed ID: 24642086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.