These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 35427623)

  • 1. Climate change and mercury in the Arctic: Biotic interactions.
    McKinney MA; Chételat J; Burke SM; Elliott KH; Fernie KJ; Houde M; Kahilainen KK; Letcher RJ; Morris AD; Muir DCG; Routti H; Yurkowski DJ
    Sci Total Environ; 2022 Aug; 834():155221. PubMed ID: 35427623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change and mercury in the Arctic: Abiotic interactions.
    Chételat J; McKinney MA; Amyot M; Dastoor A; Douglas TA; Heimbürger-Boavida LE; Kirk J; Kahilainen KK; Outridge PM; Pelletier N; Skov H; St Pierre K; Vuorenmaa J; Wang F
    Sci Total Environ; 2022 Jun; 824():153715. PubMed ID: 35149079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs.
    Borgå K; McKinney MA; Routti H; Fernie KJ; Giebichenstein J; Hallanger I; Muir DCG
    Environ Sci Process Impacts; 2022 Oct; 24(10):1544-1576. PubMed ID: 35179539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada.
    Hudelson KE; Muir DCG; Drevnick PE; Köck G; Iqaluk D; Wang X; Kirk JL; Barst BD; Grgicak-Mannion A; Shearon R; Fisk AT
    Sci Total Environ; 2019 Aug; 678():801-812. PubMed ID: 31085496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change dynamics and mercury temporal trends in Northeast Arctic cod (Gadus morhua) from the Barents Sea ecosystem.
    Bank MS; Ho QT; Ingvaldsen RB; Duinker A; Nilsen BM; Maage A; Frantzen S
    Environ Pollut; 2023 Dec; 338():122706. PubMed ID: 37821039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical review of mercury fates and contamination in the Arctic tundra ecosystem.
    Poissant L; Zhang HH; Canário J; Constant P
    Sci Total Environ; 2008 Aug; 400(1-3):173-211. PubMed ID: 18707754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem.
    Hilgendag IR; Swanson HK; Lewis CW; Ehrman AD; Power M
    Sci Total Environ; 2022 Oct; 841():156424. PubMed ID: 35662606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthropogenic and Climatic Drivers of Long-Term Changes of Mercury and Feeding Ecology in Arctic Beluga (
    Desforges JP; Outridge P; Hobson KA; Heide-Jørgensen MP; Dietz R
    Environ Sci Technol; 2022 Jan; 56(1):271-281. PubMed ID: 34914363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating effects of climate-induced changes in water temperature and diet on mercury concentrations in an Arctic freshwater forage fish.
    Laske SM; Burke SM; Carey MP; Swanson HK; Zimmerman CE
    Environ Res; 2023 Feb; 218():114851. PubMed ID: 36414108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury in the marine environment of the Canadian Arctic: review of recent findings.
    Braune B; Chételat J; Amyot M; Brown T; Clayden M; Evans M; Fisk A; Gaden A; Girard C; Hare A; Kirk J; Lehnherr I; Letcher R; Loseto L; Macdonald R; Mann E; McMeans B; Muir D; O'Driscoll N; Poulain A; Reimer K; Stern G
    Sci Total Environ; 2015 Mar; 509-510():67-90. PubMed ID: 24953756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent Temporal Trends of Mercury in Arctic Char from Paired Lakes Influenced by Climate-Related Drivers.
    Burke S; Muir DCG; Kirk J; Barst BD; Iqaluk D; Wang X; Pope M; Lamoureux SF; Lafrenière MJ
    Environ Toxicol Chem; 2023 Dec; 42(12):2712-2725. PubMed ID: 37712511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does climate change influence Arctic mercury?
    Stern GA; Macdonald RW; Outridge PM; Wilson S; Chételat J; Cole A; Hintelmann H; Loseto LL; Steffen A; Wang F; Zdanowicz C
    Sci Total Environ; 2012 Jan; 414():22-42. PubMed ID: 22104383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.
    Chételat J; Amyot M; Arp P; Blais JM; Depew D; Emmerton CA; Evans M; Gamberg M; Gantner N; Girard C; Graydon J; Kirk J; Lean D; Lehnherr I; Muir D; Nasr M; Poulain AJ; Power M; Roach P; Stern G; Swanson H; van der Velden S
    Sci Total Environ; 2015 Mar; 509-510():41-66. PubMed ID: 24993511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freshwater discharges drive high levels of methylmercury in Arctic marine biota.
    Schartup AT; Balcom PH; Soerensen AL; Gosnell KJ; Calder RS; Mason RP; Sunderland EM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11789-94. PubMed ID: 26351688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.
    Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE
    Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The consumption of ice-derived resources is associated with higher mercury contamination in an Arctic seabird.
    Cusset F; Charrier J; Massé G; Mallory M; Braune B; Provencher J; Guillou G; Massicotte P; Fort J
    Environ Res; 2023 Dec; 238(Pt 1):117066. PubMed ID: 37660878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends.
    Braune BM; Outridge PM; Fisk AT; Muir DC; Helm PA; Hobbs K; Hoekstra PF; Kuzyk ZA; Kwan M; Letcher RJ; Lockhart WL; Norstrom RJ; Stern GA; Stirling I
    Sci Total Environ; 2005 Dec; 351-352():4-56. PubMed ID: 16109439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska.
    Burke SM; Zimmerman CE; Laske SM; Koch JC; Derry AM; Guernon S; Branfireun BA; Swanson HK
    Sci Total Environ; 2020 Nov; 743():140564. PubMed ID: 32758814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs.
    Morris AD; Braune BM; Gamberg M; Stow J; O'Brien J; Letcher RJ
    Environ Res; 2022 May; 207():112169. PubMed ID: 34624268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.