These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35427869)

  • 1. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B
    Wang R; Thakur K; Feng JY; Zhu YY; Zhang F; Russo P; Spano G; Zhang JG; Wei ZJ
    Food Chem; 2022 Sep; 387():132947. PubMed ID: 35427869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of okara and vitamin B
    Feng JY; Thakur K; Ni ZJ; Zhu YY; Hu F; Zhang JG; Wei ZJ
    Food Res Int; 2021 Jul; 145():110419. PubMed ID: 34112422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes.
    Zhu YY; Thakur K; Feng JY; Cai JS; Zhang JG; Hu F; Russo P; Spano G; Wei ZJ
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):5759-5772. PubMed ID: 32388761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract.
    Gupta S; Chen WN
    J Sci Food Agric; 2021 Sep; 101(12):5124-5131. PubMed ID: 33608899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation with cellulase, hemicellulase and Yarrowia lipolytica boosts health benefits of okara.
    Vong WC; Lim XY; Liu SQ
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7129-7140. PubMed ID: 28801839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica.
    Vong WC; Au Yang KL; Liu SQ
    Int J Food Microbiol; 2016 Oct; 235():1-9. PubMed ID: 27391864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential extraction of polysaccharides from enzymatically hydrolyzed okara byproduct: physicochemical properties and in vitro fermentability.
    Villanueva-Suárez MJ; Pérez-Cózar ML; Redondo-Cuenca A
    Food Chem; 2013 Nov; 141(2):1114-9. PubMed ID: 23790893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2.
    Zhu YP; Yin LJ; Cheng YQ; Yamaki K; Mori Y; Su YC; Li LT
    Food Chem; 2008 Aug; 109(4):737-42. PubMed ID: 26049986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of health-related compounds during in vitro gastro-intestinal digestion of okara and okara fermented with
    Quintana G; Spínola V; Martins GN; Gerbino E; Gómez-Zavaglia A; Castilho PC
    J Food Sci Technol; 2020 Mar; 57(3):1061-1070. PubMed ID: 32123427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara.
    Yu CA; Yang CY
    J Biosci Bioeng; 2019 Jun; 127(6):767-773. PubMed ID: 30638804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterisation and sensory evaluation of a novel synbiotic okara beverage.
    Voss GB; Monteiro MJP; Jauregi P; Valente LMP; Pintado ME
    Food Chem; 2021 Mar; 340():127793. PubMed ID: 32916402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts.
    Vong WC; Liu SQ
    J Sci Food Agric; 2017 Jan; 97(1):135-143. PubMed ID: 26940283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile.
    Mok WK; Tan YX; Lee J; Kim J; Chen WN
    AMB Express; 2019 May; 9(1):60. PubMed ID: 31055712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic high digestion of soybean milk residue (okara).
    Kasai N; Murata A; Inui H; Sakamoto T; Kahn RI
    J Agric Food Chem; 2004 Sep; 52(18):5709-16. PubMed ID: 15373413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soymilk residue (okara) as a natural immobilization carrier for
    Xiudong X; Ying W; Xiaoli L; Ying L; Jianzhong Z
    PeerJ; 2016; 4():e2701. PubMed ID: 27867770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Ultrasonic Treatment for Black Soybean Okara Culture Medium Containing Choline Chloride on the β-Glucosidase Activity of
    Wu CM; Yang CY
    Foods; 2023 Oct; 12(20):. PubMed ID: 37893674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of biostimulants from okara through enzymatic hydrolysis and fermentation with
    Orts Á; Tejada M; Parrado J; Paneque P; García C; Hernández T; Gómez-Parrales I
    Environ Technol; 2019 Jul; 40(16):2073-2084. PubMed ID: 29400642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation.
    Gupta S; Lee JJL; Chen WN
    J Agric Food Chem; 2018 May; 66(21):5373-5381. PubMed ID: 29775057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Okara residue as source of antioxidants against lipid oxidation in milk enriched with omega-3 and bioavailability of bioactive compounds after in vitro gastrointestinal digestion.
    Vital ACP; Croge C; da Silva DF; Araújo PJ; Gallina MZ; Matumoto-Pintro PT
    J Food Sci Technol; 2018 Apr; 55(4):1518-1524. PubMed ID: 29606766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the environmental impact arising from the utilization of whole and defatted Okara in fermentative and dehydration processes.
    Quintana G; Di Clemente N; Gómez-Zavaglia A; Gerbino E
    Food Res Int; 2023 Dec; 174(Pt 1):113645. PubMed ID: 37986485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.