These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35427901)

  • 1. Sustainable valorization of semiconductor industry tantalum scrap using non-hazardous HF substitute lixiviant.
    Swain B; Lee J; Woo Gu B; Lee CG; Yoon JH
    Waste Manag; 2022 May; 144():294-302. PubMed ID: 35427901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid leaching of tantalum and other valuable metals from tantalum capacitor waste.
    Sikander A; Kelly S; Kuchta K; Sievers A; Willner T; Hursthouse AS
    Environ Sci Pollut Res Int; 2023 May; 30(21):59621-59631. PubMed ID: 37012563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Commercial indium recovery processes development from various e-(industry) waste through the insightful integration of valorization processes: A perspective.
    Swain B; Lee CG
    Waste Manag; 2019 Mar; 87():597-611. PubMed ID: 31109560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.
    Swain B; Mishra C; Kang L; Park KS; Lee CG; Hong HS
    Environ Res; 2015 Apr; 138():401-8. PubMed ID: 25769129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrometallurgical Process for Tantalum Recovery from Epoxy-Coated Solid Electrolyte Tantalum Capacitors.
    Chen WS; Ho HJ; Lin KY
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.
    Swain B; Mishra C; Lee CG; Park KS; Lee KJ
    Environ Res; 2015 Jul; 140():704-13. PubMed ID: 26094059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and Microbial Leaching of Valuable Metals from PCBs and Tantalum Capacitors of Spent Mobile Phones.
    Sikander A; Kelly S; Kuchta K; Sievers A; Willner T; Hursthouse AS
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and opportunities for sustainable valorization of rare earth metals from anthropogenic waste.
    Swain B
    Rev Environ Sci Biotechnol; 2023; 22(1):133-173. PubMed ID: 36844027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.
    Swain B; Shin D; Joo SY; Ahn NK; Lee CG; Yoon JH
    Waste Manag; 2017 Nov; 69():79-87. PubMed ID: 28830723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes.
    Marra A; Cesaro A; Belgiorno V
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals.
    Fang S; Tao T; Cao H; He M; Zeng X; Ning P; Zhao H; Wu M; Zhang Y; Sun Z
    Waste Manag; 2019 Apr; 89():212-223. PubMed ID: 31079734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.
    Ceballos DM; Gong W; Page E
    J Occup Environ Hyg; 2015; 12(7):482-8. PubMed ID: 25738822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From inequitable to sustainable e-waste processing for reduction of impact on human health and the environment.
    Ádám B; Göen T; Scheepers PTJ; Adliene D; Batinic B; Budnik LT; Duca RC; Ghosh M; Giurgiu DI; Godderis L; Goksel O; Hansen KK; Kassomenos P; Milic N; Orru H; Paschalidou A; Petrovic M; Puiso J; Radonic J; Sekulic MT; Teixeira JP; Zaid H; Au WW
    Environ Res; 2021 Mar; 194():110728. PubMed ID: 33444608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges.
    Shittu OS; Williams ID; Shaw PJ
    Waste Manag; 2021 Feb; 120():549-563. PubMed ID: 33308953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable recovery of titanium from secondary resources: A review.
    Feng E; Gao D; Wang Y; Yu F; Wang C; Wen J; Gao Y; Huang G; Xu S
    J Environ Manage; 2023 Aug; 339():117818. PubMed ID: 37030238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.