These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35428001)

  • 1. Effect of asymmetric cooling of sessile droplets on orientation of the freezing tip.
    Starostin A; Strelnikov V; Dombrovsky LA; Shoval S; Gendelman O; Bormashenko E
    J Colloid Interface Sci; 2022 Aug; 620():179-186. PubMed ID: 35428001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional Freezing of Polymer Solution Droplets.
    Kharal SP; Louf JF
    Langmuir; 2024 Jan; 40(1):118-124. PubMed ID: 38154147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How different freezing morphologies of impacting droplets form.
    Fang WZ; Zhu F; Tao WQ; Yang C
    J Colloid Interface Sci; 2021 Feb; 584():403-410. PubMed ID: 33091865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum.
    Ando K; Arakawa M; Terasaki A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28435-28444. PubMed ID: 30406234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change.
    Zhang C; Zhang H; Fang W; Zhao Y; Yang C
    Phys Rev E; 2020 Feb; 101(2-1):023314. PubMed ID: 32168660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.
    Choi J; Bischof JC
    Cryobiology; 2010 Feb; 60(1):52-70. PubMed ID: 19948163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universality of tip singularity formation in freezing water drops.
    Marín AG; Enríquez OR; Brunet P; Colinet P; Snoeijer JH
    Phys Rev Lett; 2014 Aug; 113(5):054301. PubMed ID: 25126922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on Solidification Characteristics of Sessile Urine Droplets on a Horizontal Cold Plate Surface under Natural Convection.
    Dang Q; Song M; Dang C; Zhan T; Zhang L
    Langmuir; 2022 Jun; 38(25):7846-7857. PubMed ID: 35696680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE; Chiu DT
    Lab Chip; 2010 Jul; 10(14):1873-7. PubMed ID: 20467690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent.
    Koshio K; Arai K; Waku T; Wilson PW; Hagiwara Y
    PLoS One; 2018; 13(10):e0204686. PubMed ID: 30289883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity.
    Singha SK; Das PK; Maiti B
    Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retardation of freezing of precooled, impinged water droplets on glass surfaces with microgrooves and silane coating.
    Yonezawa S; Kasahara K; Waku T; Hagiwara Y
    J Chem Phys; 2022 Sep; 157(11):114701. PubMed ID: 36137786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.
    Wang Y; Ma L; Xu X; Luo J
    Soft Matter; 2015 Jul; 11(28):5632-40. PubMed ID: 26059590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the solidification of a supercooled liquid droplet lying on a surface.
    Tabakova S; Feuillebois F
    J Colloid Interface Sci; 2004 Apr; 272(1):225-34. PubMed ID: 14985041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where should the cooling rate be determined in an extended freezing sample?
    Hartmann U; Nunner B; Körber C; Rau G
    Cryobiology; 1991 Apr; 28(2):115-30. PubMed ID: 2070614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.