These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35428106)

  • 1. Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models.
    Consolo G; Curró C; Grifó G; Valenti G
    Phys Rev E; 2022 Mar; 105(3-1):034206. PubMed ID: 35428106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion.
    Tian C
    Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive instability in hyperbolic reaction-diffusion equation with different inertia.
    Ghorai S; Poria S; Bairagi N
    Chaos; 2022 Jan; 32(1):013101. PubMed ID: 35105144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local control of globally competing patterns in coupled Swift-Hohenberg equations.
    Becker M; Frenzel T; Niedermayer T; Reichelt S; Mielke A; Bär M
    Chaos; 2018 Apr; 28(4):043121. PubMed ID: 31906656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation.
    Megne LT; Tabi CB; Kofane TC
    Phys Rev E; 2020 Oct; 102(4-1):042207. PubMed ID: 33212598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium thermodynamics of glycolytic traveling wave: Benjamin-Feir instability.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2021 Jul; 104(1-1):014221. PubMed ID: 34412344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion.
    Mvogo A; Macías-Díaz JE; Kofané TC
    Phys Rev E; 2018 Mar; 97(3-1):032129. PubMed ID: 29776049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turing instabilities in prey-predator systems with dormancy of predators.
    Kuwamura M
    J Math Biol; 2015 Jul; 71(1):125-49. PubMed ID: 25053475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instability in reaction-superdiffusion systems.
    Torabi R; Rezaei Z
    Phys Rev E; 2016 Nov; 94(5-1):052202. PubMed ID: 27967163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When does colonisation of a semi-arid hillslope generate vegetation patterns?
    Sherratt JA
    J Math Biol; 2016 Jul; 73(1):199-226. PubMed ID: 26547308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation.
    Kabir MH; Gani MO
    J Theor Biol; 2022 Mar; 536():110997. PubMed ID: 34990640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ginzburg-Landau amplitude equation for nonlinear nonlocal models.
    Garlaschi S; Gupta D; Maritan A; Azaele S
    Phys Rev E; 2021 Feb; 103(2-1):022210. PubMed ID: 33736032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern analysis in a benthic bacteria-nutrient system.
    Wetzel D
    Math Biosci Eng; 2016 Apr; 13(2):303-32. PubMed ID: 27105985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Non-local Cross-Diffusion Model of Population Dynamics I: Emergent Spatial and Spatiotemporal Patterns.
    Taylor NP; Kim H; Krause AL; Van Gorder RA
    Bull Math Biol; 2020 Aug; 82(8):112. PubMed ID: 32780350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves.
    Smith MJ; Sherratt JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046209. PubMed ID: 19905417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.