These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35428164)

  • 1. Nonlinear dynamics in micellar surfactant solutions. I. Kinetics.
    Mysona JA; McCormick AV; Morse DC
    Phys Rev E; 2022 Mar; 105(3-1):034602. PubMed ID: 35428164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear dynamics in micellar surfactant solutions. II. Diffusion.
    Mysona JA; McCormick AV; Morse DC
    Phys Rev E; 2022 Mar; 105(3-1):034603. PubMed ID: 35428158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of surfactant from a micellar solution to a bare interface. 1. Absorbing boundary.
    Mysona JA; McCormick AV; Morse DC
    J Colloid Interface Sci; 2023 May; 638():855-871. PubMed ID: 36796132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates.
    Shchekin AK; Babintsev IA; Adzhemyan LT
    J Chem Phys; 2016 Nov; 145(17):174105. PubMed ID: 27825237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of micelle formation and concentration fluctuations in solutions of short-chain surfactants.
    Kaatze U
    J Phys Chem B; 2011 Sep; 115(35):10470-7. PubMed ID: 21766842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study.
    Burov SV; Vanin AA; Brodskaya EN
    J Phys Chem B; 2009 Aug; 113(31):10715-20. PubMed ID: 19591445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering from hydrophobe-uptake spherical micelles near the critical micelle concentration.
    Morishima K; Sato T
    Langmuir; 2014 Oct; 30(39):11513-9. PubMed ID: 25251381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellization kinetics of diblock copolymers in a homopolymer matrix: a self-consistent field study.
    Thiagarajan R; Morse DC
    J Phys Condens Matter; 2011 Jul; 23(28):284109. PubMed ID: 21709331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):17-33. PubMed ID: 16309620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale times and modes of fast and slow relaxation in solutions with coexisting spherical and cylindrical micelles according to the difference Becker-Döring kinetic equations.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    J Chem Phys; 2014 Aug; 141(6):064901. PubMed ID: 25134593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of surfactant micellization: a free energy approach.
    Hadgiivanova R; Diamant H; Andelman D
    J Phys Chem B; 2011 Jun; 115(22):7268-80. PubMed ID: 21158411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.
    Danov KD; Kralchevsky PA; Stoyanov SD; Cook JL; Stott IP; Pelan EG
    Adv Colloid Interface Sci; 2018 Jun; 256():1-22. PubMed ID: 29804690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of adsorption from micellar solutions.
    Noskov BA
    Adv Colloid Interface Sci; 2002 Feb; 95(2-3):237-93. PubMed ID: 11843193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the theory of aggregation and micellization: PEO-PVP copolymer in water.
    Nyrkova IA; Semenov AN
    Faraday Discuss; 2005; 128():113-27. PubMed ID: 15658770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear kinetics of fast relaxation in solutions with short and lengthy micelles.
    Kshevetskiy MS; Shchekin AK
    J Chem Phys; 2009 Aug; 131(7):074114. PubMed ID: 19708739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of diblock copolymer surfactants. II. Micelle kinetics.
    Mysona JA; McCormick AV; Morse DC
    Phys Rev E; 2019 Jul; 100(1-1):012603. PubMed ID: 31499829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation.
    Blandamer MJ; Cullis PM; Soldi LG; Engberts JB; Kacperska A; Van Os NM; Subha MC
    Adv Colloid Interface Sci; 1995 Jul; 58(2-3):171-209. PubMed ID: 7576313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.