These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35428774)
21. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572 [TBL] [Abstract][Full Text] [Related]
22. Major contribution of sulfide-derived sulfur to the benthic food web in a large freshwater lake. Onishi Y; Yamanaka T; Koba K Geobiology; 2023 Sep; 21(5):671-685. PubMed ID: 37434444 [TBL] [Abstract][Full Text] [Related]
23. Multi-element stable isotope geochemistry and arsenic speciation of hydrothermal vent fauna (Alviniconcha sp., Ifremeria nautilei and Eochionelasmus ohtai manusensis), Manus Basin, Papua New Guinea. Bojar AV; Lécuyer C; Maher W; Bojar HP; Fourel F; Vasile Ş Chemosphere; 2023 May; 324():138258. PubMed ID: 36898438 [TBL] [Abstract][Full Text] [Related]
24. Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia). Manini E; Luna GM; Corinaldesi C; Zeppilli D; Bortoluzzi G; Caramanna G; Raffa F; Danovaro R Microb Ecol; 2008 May; 55(4):626-39. PubMed ID: 17687593 [TBL] [Abstract][Full Text] [Related]
25. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. Hayden B; Harrod C; Kahilainen KK J Anim Ecol; 2014 Nov; 83(6):1501-12. PubMed ID: 24738779 [TBL] [Abstract][Full Text] [Related]
26. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Rastelli E; Corinaldesi C; Dell'Anno A; Tangherlini M; Martorelli E; Ingrassia M; Chiocci FL; Lo Martire M; Danovaro R Environ Microbiol; 2017 Nov; 19(11):4432-4446. PubMed ID: 28805344 [TBL] [Abstract][Full Text] [Related]
27. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat. Pasotti F; Saravia LA; De Troch M; Tarantelli MS; Sahade R; Vanreusel A PLoS One; 2015; 10(11):e0141742. PubMed ID: 26559062 [TBL] [Abstract][Full Text] [Related]
29. Feeding behaviour: hydrothermal vent crabs feast on sea 'snow'. Jeng MS; Ng NK; Ng PK Nature; 2004 Dec; 432(7020):969. PubMed ID: 15616550 [TBL] [Abstract][Full Text] [Related]
30. Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Giovannelli D; d'Errico G; Manini E; Yakimov M; Vetriani C Front Microbiol; 2013; 4():184. PubMed ID: 23847607 [TBL] [Abstract][Full Text] [Related]
31. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Delong MD; Thorp JH Oecologia; 2006 Feb; 147(1):76-85. PubMed ID: 16170563 [TBL] [Abstract][Full Text] [Related]
33. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Glover AG; Gooday AJ; Bailey DM; Billett DS; Chevaldonné P; Colaço A; Copley J; Cuvelier D; Desbruyères D; Kalogeropoulou V; Klages M; Lampadariou N; Lejeusne C; Mestre NC; Paterson GL; Perez T; Ruhl H; Sarrazin J; Soltwedel T; Soto EH; Thatje S; Tselepides A; Van Gaever S; Vanreusel A Adv Mar Biol; 2010; 58():1-95. PubMed ID: 20959156 [TBL] [Abstract][Full Text] [Related]
34. Linking Intertidal and Subtidal Food Webs: Consumer-Mediated Transport of Intertidal Benthic Microalgal Carbon. Kang CK; Park HJ; Choy EJ; Choi KS; Hwang K; Kim JB PLoS One; 2015; 10(10):e0139802. PubMed ID: 26448137 [TBL] [Abstract][Full Text] [Related]
35. Microbial eukaryotic predation pressure and biomass at deep-sea hydrothermal vents. Hu SK; Anderson RE; Pachiadaki MG; Edgcomb VP; Serres MH; Sylva SP; German CR; Seewald JS; Lang SQ; Huber JA ISME J; 2024 Jan; 18(1):. PubMed ID: 38366040 [TBL] [Abstract][Full Text] [Related]
36. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. He T; Zhang X Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941 [TBL] [Abstract][Full Text] [Related]
37. Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications. Georgieva MN; Taboada S; Riesgo A; Díez-Vives C; De Leo FC; Jeffreys RM; Copley JT; Little CTS; Ríos P; Cristobo J; Hestetun JT; Glover AG Front Microbiol; 2020; 11():1636. PubMed ID: 32793148 [TBL] [Abstract][Full Text] [Related]
38. Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Barosa B; Ferrillo A; Selci M; Giardina M; Bastianoni A; Correggia M; di Iorio L; Bernardi G; Cascone M; Capuozzo R; Intoccia M; Price R; Vetriani C; Cordone A; Giovannelli D Front Microbiol; 2023; 14():1134114. PubMed ID: 37637107 [TBL] [Abstract][Full Text] [Related]
39. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687 [TBL] [Abstract][Full Text] [Related]
40. Whole genome sequencing of a novel sea anemone (Actinostola sp.) from a deep-sea hydrothermal vent. Liu C; Bian C; Gao Q; Gao Z; Huang Y; Wang L; Shi Q; Song L Sci Data; 2024 Jan; 11(1):102. PubMed ID: 38253640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]