BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35428793)

  • 21. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
    Taheri RA; Goodarzi V; Allahverdi A
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations.
    Chung CK; Shih TR; Chen TC; Wu BH
    Biomed Microdevices; 2008 Oct; 10(5):739-48. PubMed ID: 18446441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic enhanced emulsification process in 3D printed microfluidic device to encapsulate active pharmaceutical ingredients.
    Shrimal P; Jadeja G; Patel S
    Int J Pharm; 2022 May; 620():121754. PubMed ID: 35452716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering.
    Zhu Q; Hamilton M; Vasquez B; He M
    Lab Chip; 2019 Jul; 19(14):2362-2372. PubMed ID: 31214669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents.
    Huang TY; Sakar MS; Mao A; Petruska AJ; Qiu F; Chen XB; Kennedy S; Mooney D; Nelson BJ
    Adv Mater; 2015 Nov; 27(42):6644-50. PubMed ID: 26415002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Development of a Three-Dimensionally Printed Microscope Mask Alignment Adapter for the Fabrication of Multilayer Microfluidic Devices.
    Garcia CR; Ding Z; Garza HC; Li W
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of passive furrowed channel micromixers for lab-on-a-chip applications.
    Nason F; Pennati G; Dubini G
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):278-85. PubMed ID: 24700264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of peristaltic micromixers for highly integrated microfluidic systems.
    Kim D; Rho HS; Jambovane S; Shin S; Hong JW
    Rev Sci Instrum; 2016 Mar; 87(3):035003. PubMed ID: 27036809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet-Printing Patterned Chip on Sticky Superhydrophobic Surface for High-Efficiency Single-Cell Array Trapping and Real-Time Observation of Cellular Apoptosis.
    Sun Y; Song W; Sun X; Zhang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31054-31060. PubMed ID: 30148358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 3D Printed Jet Mixer for Centrifugal Microfluidic Platforms.
    Wang Y; Zhang Y; Qiao Z; Wang W
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32709009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.