These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35428804)

  • 1. Tmem174, a regulator of phosphate transporter prevents hyperphosphatemia.
    Sasaki S; Shiozaki Y; Hanazaki A; Koike M; Tanifuji K; Uga M; Kawahara K; Kaneko I; Kawamoto Y; Wiriyasermkul P; Hasegawa T; Amizuka N; Miyamoto KI; Nagamori S; Kanai Y; Segawa H
    Sci Rep; 2022 Apr; 12(1):6353. PubMed ID: 35428804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Disruption of a Proximal Tubule-Specific TMEM174 Gene in Mice Causes Hyperphosphatemia and Vascular Calcification.
    Miyazaki-Anzai S; Keenan AL; Blaine J; Miyazaki M
    J Am Soc Nephrol; 2022 Aug; 33(8):1477-1486. PubMed ID: 35459732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone.
    Sitara D; Kim S; Razzaque MS; Bergwitz C; Taguchi T; Schüler C; Erben RG; Lanske B
    PLoS Genet; 2008 Aug; 4(8):e1000154. PubMed ID: 18688277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake.
    Daryadel A; Küng CJ; Haykir B; Sabrautzki S; de Angelis MH; Hernando N; Rubio-Aliaga I; Wagner CA
    Am J Physiol Renal Physiol; 2024 May; 326(5):F792-F801. PubMed ID: 38545651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,25-Dihydroxyvitamin D Maintains Brush Border Membrane NaPi2a and Attenuates Phosphaturia in Hyp Mice.
    Martins JS; Liu ES; Sneddon WB; Friedman PA; Demay MB
    Endocrinology; 2019 Oct; 160(10):2204-2214. PubMed ID: 31237611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.
    Nakatani T; Ohnishi M; Razzaque MS
    FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute adaptation of renal phosphate transporters in the murine kidney to oral phosphate intake requires multiple signals.
    Daryadel A; Haykir B; Küng CJ; Bugarski M; Bettoni C; Schnitzbauer U; Hernando N; Hall AM; Wagner CA
    Acta Physiol (Oxf); 2022 Jun; 235(2):e13815. PubMed ID: 35334154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules.
    Ide N; Ye R; Courbebaisse M; Olauson H; Densmore MJ; Larsson TE; Hanai JI; Lanske B
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1261-F1270. PubMed ID: 29993278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF23 Is Not Required to Regulate Fetal Phosphorus Metabolism but Exerts Effects Within 12 Hours After Birth.
    Ma Y; Kirby BJ; Fairbridge NA; Karaplis AC; Lanske B; Kovacs CS
    Endocrinology; 2017 Feb; 158(2):252-263. PubMed ID: 27929669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling.
    Egli-Spichtig D; Zhang MYH; Li A; Pastor Arroyo EM; Hernando N; Wagner CA; Chang W; Perwad F
    Sci Rep; 2021 Mar; 11(1):6175. PubMed ID: 33731726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biology of Fibroblast Growth Factor 23: From Physiology to Pathology.
    Courbebaisse M; Lanske B
    Cold Spring Harb Perspect Med; 2018 May; 8(5):. PubMed ID: 28778965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteo-renal cross-talk and phosphate metabolism by the FGF23-Klotho system.
    Ohnishi M; Razzaque MS
    Contrib Nephrol; 2013; 180():1-13. PubMed ID: 23652546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Extracellular Phosphate Levels on Kidney Disease Progression in a Podocyte Injury Mouse Model.
    Maeda A; Fukushima N; Horiba N; Segawa H; Miyamoto KI
    Nephron; 2019; 142(2):135-146. PubMed ID: 30731452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation among hyperphosphatemia, type II sodium phosphate transporter activity, and vitamin D metabolism in Fgf-23 null mice.
    Sitara D
    Ann N Y Acad Sci; 2007 Nov; 1116():485-93. PubMed ID: 17646263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic disorders of phosphate regulation.
    Gattineni J; Baum M
    Pediatr Nephrol; 2012 Sep; 27(9):1477-87. PubMed ID: 22350303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Endocrine control of serum phosphate: from the discoveries of phosphatonins to novel therapies].
    Linglart A; Chaussain C
    Ann Endocrinol (Paris); 2016 Oct; 77 Suppl 1():S36-S42. PubMed ID: 28645356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of hypocalcemia allows optimal recruitment of FGF-23-dependent phosphaturic mechanisms in acute hyperphosphatemia post-phosphate enema.
    Gracia-Iguacel C; Gonzalez-Parra E; Rodriguez-Osorio L; Sanz AB; Almaden Y; de la Piedra C; Egido J; Rodriguez M; Ortiz A
    J Bone Miner Metab; 2013 Nov; 31(6):703-7. PubMed ID: 23677707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.
    Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.