These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35428836)

  • 1. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns.
    Lapenta OM; Keller PE; Nozaradan S; Varlet M
    Sci Rep; 2022 Apr; 12(1):6271. PubMed ID: 35428836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical representation of different motor rhythms during bimanual movements.
    Muthuraman M; Arning K; Govindan RB; Heute U; Deuschl G; Raethjen J
    Exp Brain Res; 2012 Dec; 223(4):489-504. PubMed ID: 23007724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical activity differs between position- and force-control knee extension tasks.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Sowman P; Hodges PW
    Exp Brain Res; 2015 Dec; 233(12):3447-57. PubMed ID: 26292962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
    Chen S; Entakli J; Bonnard M; Berton E; De Graaf JB
    PLoS One; 2013; 8(3):e60291. PubMed ID: 23555945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticomuscular synchronization with small and large dynamic force output.
    Andrykiewicz A; Patino L; Naranjo JR; Witte M; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2007 Nov; 8():101. PubMed ID: 18042289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.
    Zheng Y; Gao L; Wang G; Wang Y; Yang Z; Wang X; Li T; Dang C; Zhu R; Wang J
    Neuropsychologia; 2016 May; 85():199-207. PubMed ID: 27018484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomuscular coherence modulation with the pattern of finger force coordination.
    Wu X; Li W; Shen S; Zheng X; Zhang Y; Hou W
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):812-9. PubMed ID: 23529104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation.
    Nijhuis P; Keller PE; Nozaradan S; Varlet M
    Neuroimage; 2021 Sep; 238():118209. PubMed ID: 34051354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence.
    McClelland VM; Cvetkovic Z; Mills KR
    J Neurosci Methods; 2012 Mar; 205(1):190-201. PubMed ID: 22120690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity in the neuromuscular system underlying bimanual coordination.
    de Vries IE; Daffertshofer A; Stegeman DF; Boonstra TW
    J Neurophysiol; 2016 Dec; 116(6):2576-2585. PubMed ID: 27628205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [EEG-EMG coherence analysis of different hand motions in healthy subjects].
    Li Y; Li L; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):962-6. PubMed ID: 25764704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks.
    Li S; Fan M; Yu H; Gao L
    Neuroreport; 2020 Mar; 31(4):338-345. PubMed ID: 32058430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical representation of rhythmic foot movements.
    Raethjen J; Govindan RB; Binder S; Zeuner KE; Deuschl G; Stolze H
    Brain Res; 2008 Oct; 1236():79-84. PubMed ID: 18675792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased EMG-EMG coherence in the theta and alpha bands during bimanual force modulation.
    Carlsen AN; Daher E; Maslovat D
    Neurosci Lett; 2023 Sep; 814():137444. PubMed ID: 37591358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical muscle control of spontaneous movements in human neonates.
    Kanazawa H; Kawai M; Kinai T; Iwanaga K; Mima T; Heike T
    Eur J Neurosci; 2014 Aug; 40(3):2548-53. PubMed ID: 24827432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticomuscular Coherence Dependence on Body Side and Visual Feedback.
    L'Abbate T; Armonaite K; Gianni E; Bertoli M; Conti L; Grifoni J; Cancelli A; Cottone C; Trombetta E; Padalino M; Porcaro C; Tecchio F
    Neuroscience; 2022 May; 490():144-154. PubMed ID: 35288177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Modulation of Beta Band Cortico-Muscular Coupling Induced by Audio-Visual Rhythms.
    Varlet M; Nozaradan S; Trainor L; Keller PE
    Cereb Cortex Commun; 2020; 1(1):tgaa043. PubMed ID: 34296112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F; Longcamp M; Cremoux S; Amarantini D
    Exp Brain Res; 2017 Oct; 235(10):3023-3031. PubMed ID: 28725924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.