These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 35428964)
21. Identifying Microbe-Disease Association Based on a Novel Back-Propagation Neural Network Model. Li H; Wang Y; Zhang Z; Tan Y; Chen Z; Wang X; Pei T; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2502-2513. PubMed ID: 32305935 [TBL] [Abstract][Full Text] [Related]
22. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy. Shi K; Li L; Wang Z; Chen H; Chen Z; Fang S Front Neurosci; 2022; 16():1124315. PubMed ID: 36741060 [TBL] [Abstract][Full Text] [Related]
23. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
24. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network. Pang S; Zhuang Y; Wang X; Wang F; Qiao S BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236 [TBL] [Abstract][Full Text] [Related]
25. Predicting human microbe-drug associations via graph convolutional network with conditional random field. Long Y; Wu M; Kwoh CK; Luo J; Li X Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948 [TBL] [Abstract][Full Text] [Related]
26. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Chen J; Tao R; Qiu Y; Yuan Q Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327064 [TBL] [Abstract][Full Text] [Related]
27. Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model. Huang YA; You ZH; Chen X; Huang ZA; Zhang S; Yan GY J Transl Med; 2017 Oct; 15(1):209. PubMed ID: 29037244 [TBL] [Abstract][Full Text] [Related]
28. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258 [TBL] [Abstract][Full Text] [Related]
29. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization. He BS; Peng LH; Li Z Front Microbiol; 2018; 9():2560. PubMed ID: 30443240 [TBL] [Abstract][Full Text] [Related]
30. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. Zhang B; Wang H; Ma C; Huang H; Fang Z; Qu J BMC Bioinformatics; 2024 Oct; 25(1):332. PubMed ID: 39407120 [TBL] [Abstract][Full Text] [Related]
31. A computational model for potential microbe-disease association detection based on improved graph convolutional networks and multi-channel autoencoders. Zhang C; Zhang Z; Zhang F; Zeng B; Liu X; Wang L Front Microbiol; 2024; 15():1435408. PubMed ID: 39144226 [TBL] [Abstract][Full Text] [Related]
32. EGPDI: identifying protein-DNA binding sites based on multi-view graph embedding fusion. Zheng M; Sun G; Li X; Fan Y Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975896 [TBL] [Abstract][Full Text] [Related]
33. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion. Shi K; Huang K; Li L; Liu Q; Zhang Y; Zheng H Front Microbiol; 2024; 15():1438942. PubMed ID: 39355422 [TBL] [Abstract][Full Text] [Related]
34. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289 [TBL] [Abstract][Full Text] [Related]
35. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder. Pan J; Lin H; Dong Y; Wang Y; Ji Y Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410 [TBL] [Abstract][Full Text] [Related]
36. Prediction of potential drug-microbe associations based on matrix factorization and a three-layer heterogeneous network. Li H; Hou ZJ; Zhang WG; Qu J; Yao HB; Chen Y Comput Biol Chem; 2023 Jun; 104():107857. PubMed ID: 37018909 [TBL] [Abstract][Full Text] [Related]
37. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism. Wang S; Qiao J; Feng S Sci Rep; 2024 Mar; 14(1):5185. PubMed ID: 38431702 [TBL] [Abstract][Full Text] [Related]
38. Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction. Xuan P; Xu Z; Cui H; Gu J; Liu C; Zhang T; Wu P Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39292557 [TBL] [Abstract][Full Text] [Related]
39. HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network. Peng L; Yang Y; Yang C; Li Z; Cheong N Math Biosci Eng; 2024 Feb; 21(4):4814-4834. PubMed ID: 38872515 [TBL] [Abstract][Full Text] [Related]
40. Predicting potential microbe-disease associations based on auto-encoder and graph convolution network. Lu S; Liang Y; Li L; Miao R; Liao S; Zou Y; Yang C; Ouyang D BMC Bioinformatics; 2023 Dec; 24(1):476. PubMed ID: 38097930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]