BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35429013)

  • 1. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
    Minerali E; Foil DH; Zorn KM; Lane TR; Ekins S
    Mol Pharm; 2020 Jul; 17(7):2628-2637. PubMed ID: 32422053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How platinum-induced nephrotoxicity occurs? Machine learning prediction in non-small cell lung cancer patients.
    Huang SH; Chu CY; Hsu YC; Wang SY; Kuo LN; Bai KJ; Yu MC; Chang JH; Liu EH; Chen HY
    Comput Methods Programs Biomed; 2022 Jun; 221():106839. PubMed ID: 35550456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Prediction and Insights Into the Structural Basis of Drug Induced Nephrotoxicity.
    Shi Y; Hua Y; Wang B; Zhang R; Li X
    Front Pharmacol; 2021; 12():793332. PubMed ID: 35082675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of chemical acute contact toxicity on honey bees via machine learning methods.
    Xu X; Zhao P; Wang Z; Zhang X; Wu Z; Li W; Tang Y; Liu G
    Toxicol In Vitro; 2021 Apr; 72():105089. PubMed ID: 33444712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Prediction of CYP2C8 Inhibition with Machine-Learning Methods.
    Zhang X; Zhao P; Wang Z; Xu X; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2021 Aug; 34(8):1850-1859. PubMed ID: 34255486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods.
    Noda T; Mizuno S; Mogushi K; Hase T; Iida Y; Takeuchi K; Ishiwata Y; Nagata M
    Br J Clin Pharmacol; 2024 Mar; 90(3):675-683. PubMed ID: 37921554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Prediction of Chemicals Binding to Aromatase with Machine Learning Methods.
    Du H; Cai Y; Yang H; Zhang H; Xue Y; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2017 May; 30(5):1209-1218. PubMed ID: 28414904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human nephrotoxicity prediction models for three types of kidney injury based on data sets of pharmacological compounds and their metabolites.
    Lee S; Kang YM; Park H; Dong MS; Shin JM; No KT
    Chem Res Toxicol; 2013 Nov; 26(11):1652-9. PubMed ID: 24138086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Hu Y; Ren Q; Liu X; Gao L; Xiao L; Yu W
    Chem Res Toxicol; 2023 Jul; 36(7):1044-1054. PubMed ID: 37300507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.