These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35429013)

  • 21. Gene Expression Data Based Deep Learning Model for Accurate Prediction of Drug-Induced Liver Injury in Advance.
    Feng C; Chen H; Yuan X; Sun M; Chu K; Liu H; Rui M
    J Chem Inf Model; 2019 Jul; 59(7):3240-3250. PubMed ID: 31188585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches.
    Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Prediction of Hemolytic Toxicity on the Human Erythrocytes for Small Molecules by Machine-Learning and Genetic Algorithm.
    Zheng S; Wang Y; Liu W; Chang W; Liang G; Xu Y; Lin F
    J Med Chem; 2020 Jun; 63(12):6499-6512. PubMed ID: 31282671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Representation of molecules for drug response prediction.
    An X; Chen X; Yi D; Li H; Guan Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.
    Hemmerich J; Troger F; Füzi B; F Ecker G
    Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods.
    Li L; Lu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2022 Sep; 35(9):1614-1624. PubMed ID: 36053050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.
    Liu M; Wu Y; Chen Y; Sun J; Zhao Z; Chen XW; Matheny ME; Xu H
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e28-35. PubMed ID: 22718037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Silico Prediction of Metabolic Epoxidation for Drug-like Molecules via Machine Learning Methods.
    Hu J; Cai Y; Li W; Liu G; Tang Y
    Mol Inform; 2020 Aug; 39(8):e1900178. PubMed ID: 32162831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases.
    Guo H; Zhang P; Zhang R; Hua Y; Zhang P; Cui X; Huang X; Li X
    Front Immunol; 2022; 13():1015409. PubMed ID: 36353637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
    Tian S; Wang J; Li Y; Xu X; Hou T
    Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints.
    Kim E; Nam H
    BMC Bioinformatics; 2017 May; 18(Suppl 7):227. PubMed ID: 28617228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods.
    Wang Z; Yang H; Wu Z; Wang T; Li W; Tang Y; Liu G
    ChemMedChem; 2018 Oct; 13(20):2189-2201. PubMed ID: 30110511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fingerprint-based computational models of 5-lipo-oxygenase activating protein inhibitors: Activity prediction and structure clustering.
    Tu G; Qin Z; Huo D; Zhang S; Yan A
    Chem Biol Drug Des; 2020 Sep; 96(3):931-947. PubMed ID: 33058463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening.
    Yang M; Chen J; Shi X; Xu L; Xi Z; You L; An R; Wang X
    Mol Pharm; 2015 Oct; 12(10):3691-713. PubMed ID: 26376206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning - Predicting Ames mutagenicity of small molecules.
    Chu CSM; Simpson JD; O'Neill PM; Berry NG
    J Mol Graph Model; 2021 Dec; 109():108011. PubMed ID: 34555723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods.
    Zhao P; Peng Y; Xu X; Wang Z; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2021 Oct; 41(10):1518-1526. PubMed ID: 33469990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CAPi: Computational Model for Apicoplast Inhibitors Prediction Against Plasmodium Parasite.
    Dixit S; Singla D
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):303-310. PubMed ID: 28260517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning models for classification tasks related to drug safety.
    Rácz A; Bajusz D; Miranda-Quintana RA; Héberger K
    Mol Divers; 2021 Aug; 25(3):1409-1424. PubMed ID: 34110577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels.
    Su R; Li Y; Zink D; Loo LH
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S16. PubMed ID: 25521947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.