These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35429013)

  • 41. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers.
    Cai C; Fang J; Guo P; Wang Q; Hong H; Moslehi J; Cheng F
    J Chem Inf Model; 2018 May; 58(5):943-956. PubMed ID: 29712429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods.
    Huang X; Tang F; Hua Y; Li X
    Chem Biol Drug Des; 2021 Aug; 98(2):248-257. PubMed ID: 34013639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of torsade-causing potential of drug candidates using one-class classification and ensemble modelling approaches.
    He Y; Lim SW; Yap CW
    Curr Drug Saf; 2012 Sep; 7(4):298-308. PubMed ID: 23062242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FetoML: Interpretable predictions of the fetotoxicity of drugs based on machine learning approaches.
    Jeong M; Yoo S
    Mol Inform; 2024 Jun; 43(6):e202300312. PubMed ID: 38850133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Prediction Models for Drug-Induced Cholestasis, Cirrhosis, Hepatitis, and Steatosis Based on Drug and Drug Metabolite Structures.
    Shin HK; Kang MG; Park D; Park T; Yoon S
    Front Pharmacol; 2020; 11():67. PubMed ID: 32116729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiple machine learning methods aided virtual screening of Na
    Kong W; Huang W; Peng C; Zhang B; Duan G; Ma W; Huang Z
    J Cell Mol Med; 2023 Jan; 27(2):266-276. PubMed ID: 36573431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating the performance of machine-learning regression models for pharmacokinetic drug-drug interactions.
    Gill J; Moullet M; Martinsson A; Miljković F; Williamson B; Arends RH; Pilla Reddy V
    CPT Pharmacometrics Syst Pharmacol; 2023 Jan; 12(1):122-134. PubMed ID: 36382697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In silico Prediction of Inhibitory Constant of Thrombin Inhibitors Using Machine Learning.
    Zhao J; Zhu L; Zhou W; Yin L; Wang Y; Fan Y; Chen Y; Liu H
    Comb Chem High Throughput Screen; 2018; 21(9):662-669. PubMed ID: 30569853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates.
    Pu L; Naderi M; Liu T; Wu HC; Mukhopadhyay S; Brylinski M
    BMC Pharmacol Toxicol; 2019 Jan; 20(1):2. PubMed ID: 30621790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development and application of
    Li X; Chen Y; Song X; Zhang Y; Li H; Zhao Y
    RSC Adv; 2018 Feb; 8(15):8101-8111. PubMed ID: 35542036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of intrinsic hepatotoxic compounds in Polygonum multiflorum Thunb. using machine-learning methods.
    Hu X; Du T; Dai S; Wei F; Chen X; Ma S
    J Ethnopharmacol; 2022 Nov; 298():115620. PubMed ID: 35963419
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction model development of late-onset preeclampsia using machine learning-based methods.
    Jhee JH; Lee S; Park Y; Lee SE; Kim YA; Kang SW; Kwon JY; Park JT
    PLoS One; 2019; 14(8):e0221202. PubMed ID: 31442238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.