These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35429252)

  • 1. Ectopic expression of AtNF-YA6-VP16 in petals results in a novel petal phenotype in Torenia fournieri.
    Sekiguchi N; Sasaki K; Oshima Y; Mitsuda N
    Planta; 2022 Apr; 255(5):105. PubMed ID: 35429252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes.
    Sasaki K; Ohtsubo N
    Planta; 2020 Apr; 251(5):101. PubMed ID: 32333191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture.
    Sasaki K; Yamaguchi H; Nakayama M; Aida R; Ohtsubo N
    Plant Mol Biol; 2014 Oct; 86(3):319-34. PubMed ID: 25082268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind.
    Sasaki K; Aida R; Yamaguchi H; Shikata M; Niki T; Nishijima T; Ohtsubo N
    Mol Genet Genomics; 2010 Nov; 284(5):399-414. PubMed ID: 20872230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Novel Floral Traits Using a Combination of Floral Organ-Specific Promoters and a Chimeric Repressor in Torenia fournieri Lind.
    Sasaki K; Yamaguchi H; Kasajima I; Narumi T; Ohtsubo N
    Plant Cell Physiol; 2016 Jun; 57(6):1319-31. PubMed ID: 27107289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flower color modification in Torenia fournieri by genetic engineering of betacyanin pigments.
    Nishihara M; Hirabuchi A; Teshima T; Uesugi S; Takahashi H
    BMC Plant Biol; 2024 Jun; 24(1):614. PubMed ID: 38937670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.
    Sasaki K; Yamaguchi H; Aida R; Shikata M; Abe T; Ohtsubo N
    Plant J; 2012 Sep; 71(6):1002-14. PubMed ID: 22577962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of mutations in white-flowered torenia plants.
    Nishihara M; Yamada E; Saito M; Fujita K; Takahashi H; Nakatsuka T
    BMC Plant Biol; 2014 Apr; 14():86. PubMed ID: 24694353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Rice
    Maeda S; Sasaki K; Kaku H; Kanda Y; Ohtsubo N; Mori M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic expression of Torenia fournieri TCP8 and TCP13 alters the leaf and petal phenotypes in Arabidopsis thaliana.
    Zhang L; Zhou L; Yung WS; Su W; Huang M
    Physiol Plant; 2021 Nov; 173(3):856-866. PubMed ID: 34171126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of
    Kasajima I; Ohtsubo N; Sasaki K
    Hortic Res; 2017; 4():17008. PubMed ID: 28446955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of ALOG gene family suggests various roles in establishing plant architecture of Torenia fournieri.
    Xiao W; Ye Z; Yao X; He L; Lei Y; Luo D; Su S
    BMC Plant Biol; 2018 Sep; 18(1):204. PubMed ID: 30236061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri.
    Shikata M; Yamaguchi H; Sasaki K; Ohtsubo N
    Planta; 2012 Oct; 236(4):1027-35. PubMed ID: 22552637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri.
    Nishihara M; Higuchi A; Watanabe A; Tasaki K
    BMC Plant Biol; 2018 Dec; 18(1):331. PubMed ID: 30518324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression.
    Tanaka Y; Oshima Y; Yamamura T; Sugiyama M; Mitsuda N; Ohtsubo N; Ohme-Takagi M; Terakawa T
    Sci Rep; 2013; 3():2641. PubMed ID: 24026510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.
    Kasajima I; Sasaki K
    Plant Signal Behav; 2016 May; 11(5):e1177693. PubMed ID: 27089475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2.
    Fu W; Chen D; Pan Q; Li F; Zhao Z; Ge X; Li Z
    Plant Biotechnol J; 2018 Feb; 16(2):367-380. PubMed ID: 28640973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri.
    Oshima Y; Shikata M; Koyama T; Ohtsubo N; Mitsuda N; Ohme-Takagi M
    Plant Cell; 2013 May; 25(5):1609-24. PubMed ID: 23709630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the lily p70(s6k) gene in Arabidopsis affects elongation of flower organs and indicates TOR-dependent regulation of AP3, PI and SUP translation.
    Tzeng TY; Kong LR; Chen CH; Shaw CC; Yang CH
    Plant Cell Physiol; 2009 Sep; 50(9):1695-709. PubMed ID: 19651701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.
    Byzova M; Verduyn C; De Brouwer D; De Block M
    Planta; 2004 Jan; 218(3):379-87. PubMed ID: 14534787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.