These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35429379)
1. CD44 is critical for the enhancing effect of hyaluronan in allergen-specific sublingual immunotherapy in a murine model of chronic asthma. Katoh S; Uesaka T; Tanaka H; Matsuhara H; Ohashi-Doi K; Oga T Clin Exp Immunol; 2022 Jun; 208(2):202-211. PubMed ID: 35429379 [TBL] [Abstract][Full Text] [Related]
2. Beneficial effects of Galectin-9 on allergen-specific sublingual immunotherapy in a Dermatophagoides farinae-induced mouse model of chronic asthma. Ikeda M; Katoh S; Shimizu H; Hasegawa A; Ohashi-Doi K; Oka M Allergol Int; 2017 Jul; 66(3):432-439. PubMed ID: 27876361 [TBL] [Abstract][Full Text] [Related]
3. Methods for Experimental Allergen Immunotherapy: Subcutaneous and Sublingual Desensitization in Mouse Models of Allergic Asthma. Hesse L; Petersen AH; Nawijn MC Methods Mol Biol; 2021; 2223():295-335. PubMed ID: 33226602 [TBL] [Abstract][Full Text] [Related]
4. Critical Involvement of CD44 in T Helper Type 2 Cell-Mediated Eosinophilic Airway Inflammation in a Mouse Model of Acute Asthma. Katoh S Front Immunol; 2021; 12():811600. PubMed ID: 35069598 [TBL] [Abstract][Full Text] [Related]
5. A crucial role of sialidase Neu1 in hyaluronan receptor function of CD44 in T helper type 2-mediated airway inflammation of murine acute asthmatic model. Katoh S; Maeda S; Fukuoka H; Wada T; Moriya S; Mori A; Yamaguchi K; Senda S; Miyagi T Clin Exp Immunol; 2010 Aug; 161(2):233-41. PubMed ID: 20491786 [TBL] [Abstract][Full Text] [Related]
6. Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma. Hesse L; Nawijn MC Methods Mol Biol; 2017; 1559():137-168. PubMed ID: 28063043 [TBL] [Abstract][Full Text] [Related]
7. Subcutaneous immunotherapy suppresses Th2 inflammation and induces neutralizing antibodies, but sublingual immunotherapy suppresses airway hyperresponsiveness in grass pollen mouse models for allergic asthma. Hesse L; Brouwer U; Petersen AH; Gras R; Bosman L; Brimnes J; Oude Elberink JNG; van Oosterhout AJM; Nawijn MC Clin Exp Allergy; 2018 Aug; 48(8):1035-1049. PubMed ID: 29752757 [TBL] [Abstract][Full Text] [Related]
8. Effects of sublingual immunotherapy in a murine asthma model sensitized by intranasal administration of house dust mite extracts. Shima K; Koya T; Tsukioka K; Sakagami T; Hasegawa T; Fukano C; Ohashi-Doi K; Watanabe S; Suzuki E; Kikuchi T Allergol Int; 2017 Jan; 66(1):89-96. PubMed ID: 27397923 [TBL] [Abstract][Full Text] [Related]
9. House Dust Mite-Specific Sublingual Immunotherapy Prevents the Development of Allergic Inflammation in a Mouse Model of Experimental Asthma. Hagner S; Rask C; Brimnes J; Andersen PS; Raifer H; Renz H; Garn H Int Arch Allergy Immunol; 2016; 170(1):22-34. PubMed ID: 27287860 [TBL] [Abstract][Full Text] [Related]
10. Oral administration of allergen extracts from Dermatophagoides farinae desensitizes specific allergen-induced inflammation and airway hyperresponsiveness in rats. Xie QM; Wu X; Wu HM; Deng YM; Zhang SJ; Zhu JP; Dong XW Int Immunopharmacol; 2008 Dec; 8(12):1639-45. PubMed ID: 18721904 [TBL] [Abstract][Full Text] [Related]
11. Sublingual immunotherapy efficacy of Dermatophagoides farinae vaccine in a murine asthma model. Yu HQ; Li XH; Guo H; Liu ZG; Ran PX; Ji KM; Wang J Int Arch Allergy Immunol; 2010; 152(1):41-8. PubMed ID: 19940504 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of transdermal immunotherapy with biodegradable microneedle patches in a murine asthma model. Park KH; Oh EY; Han H; Kim JD; Kim SJ; Jeong KY; Kim JH; Park CO; Kim SR; Lee JH; Jeong DH; Yong TS; Lee KH; Park JW Clin Exp Allergy; 2020 Sep; 50(9):1084-1092. PubMed ID: 32557846 [TBL] [Abstract][Full Text] [Related]
13. 4-1 BB stimulation inhibits allergen-specific immunoglobulin E production and airway hyper-reactivity but partially suppresses bronchial eosinophilic inflammation in a mouse asthma model. Cho YS; Kwon B; Lee TH; Kim TB; Moon KA; La S; Lee J; Lee SD; Oh YM; Moon HB Clin Exp Allergy; 2006 Mar; 36(3):377-85. PubMed ID: 16499650 [TBL] [Abstract][Full Text] [Related]
14. GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma. Motta AC; Vissers JL; Gras R; Van Esch BC; Van Oosterhout AJ; Nawijn MC Respir Res; 2009 Oct; 10(1):93. PubMed ID: 19811658 [TBL] [Abstract][Full Text] [Related]
15. Allergen-specific polyclonal antibodies reduce allergic disease in a mouse model of allergic asthma. Moerch U; Haahr Hansen M; Vest Hansen NJ; Rasmussen LK; Oleksiewicz MB; Frandsen TP; Haurum JS; Bregenholt S Int Arch Allergy Immunol; 2006; 140(3):261-9. PubMed ID: 16699287 [TBL] [Abstract][Full Text] [Related]
16. Induction of immune tolerance in asthmatic mice by vaccination with DNA encoding an allergen-cytotoxic T lymphocyte-associated antigen 4 combination. Zhang F; Huang G; Hu B; Song Y; Shi Y Clin Vaccine Immunol; 2011 May; 18(5):807-14. PubMed ID: 21346053 [TBL] [Abstract][Full Text] [Related]
17. CD44 is critical for airway accumulation of antigen-specific Th2, but not Th1, cells induced by antigen challenge in mice. Katoh S; Kaminuma O; Hiroi T; Mori A; Ohtomo T; Maeda S; Shimizu H; Obase Y; Oka M Eur J Immunol; 2011 Nov; 41(11):3198-207. PubMed ID: 21874648 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of therapeutic sublingual vaccines in a murine model of chronic house dust mite allergic airway inflammation. Tourdot S; Airouche S; Berjont N; Da Silveira A; Mascarell L; Jacquet A; Caplier L; Langelot M; Baron-Bodo V; Moingeon P Clin Exp Allergy; 2011 Dec; 41(12):1784-92. PubMed ID: 22092967 [TBL] [Abstract][Full Text] [Related]