These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 35429500)
21. Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK. Ahmed I; Calle Y; Sayed MA; Kamal JM; Rengaswamy P; Manser E; Meiners S; Nur-E-Kamal A Biochem Biophys Res Commun; 2004 Feb; 314(2):571-9. PubMed ID: 14733946 [TBL] [Abstract][Full Text] [Related]
22. Divergent roles of the regulatory subunits of class IA PI3K. Kim CW; Lee JM; Park SW Front Endocrinol (Lausanne); 2023; 14():1152579. PubMed ID: 38317714 [TBL] [Abstract][Full Text] [Related]
23. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation. Hale BG; Batty IH; Downes CP; Randall RE J Biol Chem; 2008 Jan; 283(3):1372-1380. PubMed ID: 18029356 [TBL] [Abstract][Full Text] [Related]
24. The p85 and p110 subunits of phosphatidylinositol 3-kinase-alpha are substrates, in vitro, for a constitutively associated protein tyrosine kinase in platelets. Geltz NR; Augustine JA Blood; 1998 Feb; 91(3):930-9. PubMed ID: 9446654 [TBL] [Abstract][Full Text] [Related]
25. The regulatory subunits of PI3K, p85α and p85β, differentially affect BRD7-mediated regulation of insulin signaling. Lee JM; Liu R; Park SW J Mol Cell Biol; 2022 Jan; 13(12):889-901. PubMed ID: 34751372 [TBL] [Abstract][Full Text] [Related]
26. Five isoforms of the phosphatidylinositol 3-kinase regulatory subunit exhibit different associations with receptor tyrosine kinases and their tyrosine phosphorylations. Inukai K; Funaki M; Anai M; Ogihara T; Katagiri H; Fukushima Y; Sakoda H; Onishi Y; Ono H; Fujishiro M; Abe M; Oka Y; Kikuchi M; Asano T FEBS Lett; 2001 Feb; 490(1-2):32-8. PubMed ID: 11172806 [TBL] [Abstract][Full Text] [Related]
27. Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Luo J; Sobkiw CL; Logsdon NM; Watt JM; Signoretti S; O'Connell F; Shin E; Shim Y; Pao L; Neel BG; Depinho RA; Loda M; Cantley LC Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10238-43. PubMed ID: 16006513 [TBL] [Abstract][Full Text] [Related]
28. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK. Tetley GJN; Mott HR; Cooley RN; Owen D J Biol Chem; 2017 Jul; 292(27):11361-11373. PubMed ID: 28539360 [TBL] [Abstract][Full Text] [Related]
29. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Katada T; Kurosu H; Okada T; Suzuki T; Tsujimoto N; Takasuga S; Kontani K; Hazeki O; Ui M Chem Phys Lipids; 1999 Apr; 98(1-2):79-86. PubMed ID: 10358930 [TBL] [Abstract][Full Text] [Related]
30. ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. Fos C; Salles A; Lang V; Carrette F; Audebert S; Pastor S; Ghiotto M; Olive D; Bismuth G; Nunès JA J Immunol; 2008 Aug; 181(3):1969-77. PubMed ID: 18641334 [TBL] [Abstract][Full Text] [Related]
31. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Thapa N; Chen M; Cryns VL; Anderson R Cell Rep; 2024 May; 43(5):114119. PubMed ID: 38630589 [TBL] [Abstract][Full Text] [Related]
32. BRD7, a tumor suppressor, interacts with p85α and regulates PI3K activity. Chiu YH; Lee JY; Cantley LC Mol Cell; 2014 Apr; 54(1):193-202. PubMed ID: 24657164 [TBL] [Abstract][Full Text] [Related]
33. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Tsolakos N; Durrant TN; Chessa T; Suire SM; Oxley D; Kulkarni S; Downward J; Perisic O; Williams RL; Stephens L; Hawkins PT Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12176-12181. PubMed ID: 30442661 [TBL] [Abstract][Full Text] [Related]
34. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. Ueki K; Fruman DA; Yballe CM; Fasshauer M; Klein J; Asano T; Cantley LC; Kahn CR J Biol Chem; 2003 Nov; 278(48):48453-66. PubMed ID: 14504291 [TBL] [Abstract][Full Text] [Related]
35. Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Shen H; Ferguson SM; Dephoure N; Park R; Yang Y; Volpicelli-Daley L; Gygi S; Schlessinger J; De Camilli P Mol Biol Cell; 2011 Feb; 22(4):493-502. PubMed ID: 21169560 [TBL] [Abstract][Full Text] [Related]
36. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Hofmann BT; Jücker M Cell Signal; 2012 Oct; 24(10):1950-4. PubMed ID: 22735814 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of influenza A virus NS1 protein interaction with the p85beta, but not the p85alpha, subunit of phosphatidylinositol 3-kinase (PI3K) and up-regulation of PI3K activity. Li Y; Anderson DH; Liu Q; Zhou Y J Biol Chem; 2008 Aug; 283(34):23397-409. PubMed ID: 18534979 [TBL] [Abstract][Full Text] [Related]
38. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85alpha. Hallmann D; Trümper K; Trusheim H; Ueki K; Kahn CR; Cantley LC; Fruman DA; Hörsch D J Biol Chem; 2003 Feb; 278(7):5099-108. PubMed ID: 12435753 [TBL] [Abstract][Full Text] [Related]
39. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Galisteo ML; Yang Y; Ureña J; Schlessinger J Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9796-801. PubMed ID: 16777958 [TBL] [Abstract][Full Text] [Related]
40. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL; Burke JE Front Immunol; 2018; 9():575. PubMed ID: 29616047 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]