BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 35429670)

  • 1. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges on optimization of 3D-printed bone scaffolds.
    Bahraminasab M
    Biomed Eng Online; 2020 Sep; 19(1):69. PubMed ID: 32883300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds.
    Ren Y; Zhang C; Liu Y; Kong W; Yang X; Niu H; Qiang L; Yang H; Yang F; Wang C; Wang J
    ACS Biomater Sci Eng; 2024 Jan; 10(1):255-270. PubMed ID: 38118130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Dimensional Printing for Bone Tissue Engineering.
    Qu M; Wang C; Zhou X; Libanori A; Jiang X; Xu W; Zhu S; Chen Q; Sun W; Khademhosseini A
    Adv Healthc Mater; 2021 Jun; 10(11):e2001986. PubMed ID: 33876580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair.
    Slavin BV; Nayak VV; Boczar D; Bergamo ET; Slavin BR; Yarholar LM; Torroni A; Coelho PG; Witek L
    J Craniofac Surg; 2024 Jan-Feb 01; 35(1):261-267. PubMed ID: 37622526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis.
    Entezari A; Wu Q; Mirkhalaf M; Lu Z; Roohani I; Li Q; Dunstan CR; Jiang X; Zreiqat H
    Acta Biomater; 2024 May; 180():115-127. PubMed ID: 38642786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part I: Evolution and Optimization of 3D-Printed Scaffolds for Repair of Defects.
    Nayak VV; Slavin B; Bergamo ETP; Boczar D; Slavin BR; Runyan CM; Tovar N; Witek L; Coelho PG
    J Craniofac Surg; 2023 Oct; 34(7):2016-2025. PubMed ID: 37639650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications.
    Thangavel M; Elsen Selvam R
    ACS Biomater Sci Eng; 2022 Dec; 8(12):5060-5093. PubMed ID: 36415173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient scaffolds for osteochondral tissue engineering and regeneration.
    Zhang B; Huang J; Narayan RJ
    J Mater Chem B; 2020 Sep; 8(36):8149-8170. PubMed ID: 32776030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering.
    Sun F; Sun X; Wang H; Li C; Zhao Y; Tian J; Lin Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.