These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 35429723)

  • 41. Electrochemical MIP-Sensors for Drugs.
    Yarman A; Kurbanoglu S; Jetzschmann KJ; Ozkan SA; Wollenberger U; Scheller FW
    Curr Med Chem; 2018; 25(33):4007-4019. PubMed ID: 28982312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors.
    Guo X; Li J; Arabi M; Wang X; Wang Y; Chen L
    ACS Sens; 2020 Mar; 5(3):601-619. PubMed ID: 32072805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of Optical Sensors Based on Quantum Dots Using Molecularly Imprinted Polymers for Determination of Prilocaine.
    Kazemifard N; Ensafi AA; Saberi Z
    Methods Mol Biol; 2020; 2135():275-283. PubMed ID: 32246342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.
    Turco A; Corvaglia S; Mazzotta E
    Biosens Bioelectron; 2015 Jan; 63():240-247. PubMed ID: 25104433
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical Sensing of Favipiravir with an Innovative Water-Dispersible Molecularly Imprinted Polymer Based on the Bimetallic Metal-Organic Framework: Comparison of Morphological Effects.
    Erk N; Mehmandoust M; Soylak M
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan.
    Dinu A; Apetrei C
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecularly imprinted polymers: preparation, characterisation, and application in drug delivery systems.
    Yuksel N; Tektas S
    J Microencapsul; 2022 Mar; 39(2):176-196. PubMed ID: 35319325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electropolymerized Molecularly Imprinted Polymer Synthesis Guided by an Integrated Data-Driven Framework for Cortisol Detection.
    Dykstra G; Reynolds B; Smith R; Zhou K; Liu Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25972-25983. PubMed ID: 35536156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics.
    Ayankojo AG; Reut J; Syritski V
    Biosensors (Basel); 2024 Jan; 14(2):. PubMed ID: 38391990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing.
    Balciunas D; Plausinaitis D; Ratautaite V; Ramanaviciene A; Ramanavicius A
    Talanta; 2022 May; 241():123252. PubMed ID: 35121544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecularly Imprinted Polymer-Based Luminescent Chemosensors.
    Liu R; Ko CC
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecularly imprinted polymers for the selective recognition of microorganisms.
    Dar KK; Shao S; Tan T; Lv Y
    Biotechnol Adv; 2020 Dec; 45():107640. PubMed ID: 33031907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection.
    Zhou Q; Wang M; Yagi S; Minami T
    Nanoscale; 2021 Jan; 13(1):100-107. PubMed ID: 33231581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecularly imprinted polymers as recognition materials for electronic tongues.
    Huynh TP; Kutner W
    Biosens Bioelectron; 2015 Dec; 74():856-64. PubMed ID: 26233642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence Sensing with Molecularly Imprinted Polymer-Capped Quantum Dots.
    Montaseri H; Abrahamse H; Forbes PBC
    Methods Mol Biol; 2021; 2359():183-194. PubMed ID: 34410670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in Molecularly Imprinting Technology for Bioanalytical Applications.
    Li R; Feng Y; Pan G; Liu L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards Development of Molecularly Imprinted Electrochemical Sensors for Food and Drug Safety: Progress and Trends.
    Zhou S; Liu C; Lin J; Zhu Z; Hu B; Wu L
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors.
    Cao Y; Feng T; Xu J; Xue C
    Biosens Bioelectron; 2019 Sep; 141():111447. PubMed ID: 31238279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine.
    Zhang Y; Wang Q; Zhao X; Ma Y; Zhang H; Pan G
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors.
    Ahmad OS; Bedwell TS; Esen C; Garcia-Cruz A; Piletsky SA
    Trends Biotechnol; 2019 Mar; 37(3):294-309. PubMed ID: 30241923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.