BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35429832)

  • 1. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors.
    Luo M; Jiang H; Shi T
    Comput Biol Med; 2022 Jun; 145():105506. PubMed ID: 35429832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-security automatic path planning of radiofrequency ablation for liver tumors.
    Li J; Gao H; Shen N; Wu D; Feng L; Hu P
    Comput Methods Programs Biomed; 2023 Dec; 242():107769. PubMed ID: 37714019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality.
    Li R; Tong Y; Yang T; Guo J; Si W; Zhang Y; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Jun; 90():101905. PubMed ID: 33848757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors.
    Wang Z; Wu W; Wu S; Zhou Z; Zhang H
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38275462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning.
    Hu W; Jiang H; Wang M
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36067775
    [No Abstract]   [Full Text] [Related]  

  • 6. Method for puncture trajectory planning in liver tumors thermal ablation based on NSGA-III.
    Dong Q; Cao M; Gu F; Gong W; Cai Q
    Technol Health Care; 2022; 30(5):1243-1256. PubMed ID: 35342068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A method of lung puncture path planning based on multi-level constraint].
    Sun F; Pei H; Yang Y; Fan Q; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):462-470. PubMed ID: 35788515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heuristic method for rapid and automatic radiofrequency ablation planning of liver tumors.
    Li R; An C; Wang S; Wang G; Zhao L; Yu Y; Wang L
    Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2213-2221. PubMed ID: 37145252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlapping radiofrequency ablation planning and robot-assisted needle insertion for large liver tumors.
    Liu P; Qin J; Duan B; Wang Q; Tan X; Zhao B; Jonnathan PL; Chui CK; Heng PA
    Int J Med Robot; 2019 Feb; 15(1):e1952. PubMed ID: 30117266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization.
    Zhang J; Zhang J; Han P; Chen XZ; Zhang Y; Li W; Qin J; He L
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38394681
    [No Abstract]   [Full Text] [Related]  

  • 11. Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors.
    Baegert C; Villard C; Schreck P; Soler L; Gangi A
    Comput Aided Surg; 2007 Mar; 12(2):82-90. PubMed ID: 17487658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Percutaneous radiofrequency ablation with artificial ascites for hepatocellular carcinoma in the hepatic dome: initial experience.
    Rhim H; Lim HK; Kim YS; Choi D
    AJR Am J Roentgenol; 2008 Jan; 190(1):91-8. PubMed ID: 18094298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical flexible needle puncture path planning based on particle swarm optimization.
    Cai C; Sun C; Han Y; Zhang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105511. PubMed ID: 32408238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiautomatic Radiofrequency Ablation Planning Based on Constrained Clustering Process for Hepatic Tumors.
    Chen R; Jiang T; Lu F; Wang K; Kong D
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):645-657. PubMed ID: 28600235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative trajectory planning for percutaneous procedures in deformable environments.
    Hamzé N; Peterlík I; Cotin S; Essert C
    Comput Med Imaging Graph; 2016 Jan; 47():16-28. PubMed ID: 26629592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: A review.
    Zhang R; Wu SC; Wu WW; Gao HJ; Zhou ZH
    Math Biosci Eng; 2019 May; 16(5):4846-4872. PubMed ID: 31499693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Clinical application of ultrasound-guided radiofrequency ablation for primary hepatocellular carcinoma near the liver surface].
    Wu J; Lin S; Wu W; Yan K; Dai Q; Chen M
    Zhonghua Zhong Liu Za Zhi; 2015 Dec; 37(12):933-7. PubMed ID: 26887624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planning sonography to assess the feasibility of percutaneous radiofrequency ablation of hepatocellular carcinomas.
    Rhim H; Lee MH; Kim YS; Choi D; Lee WJ; Lim HK
    AJR Am J Roentgenol; 2008 May; 190(5):1324-30. PubMed ID: 18430851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting accuracy of CT-guided stereotaxy for radiofrequency ablation of liver tumours.
    Widmann G; Schullian P; Haidu M; Fasser M; Bale R
    Minim Invasive Ther Allied Technol; 2011 Jul; 20(4):218-25. PubMed ID: 21469968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on computational models of multi-electrode radiofrequency ablation of large liver tumors.
    Audigier C; Mohaiu AT; Alzaga A; Bale R; Mansi T
    Int J Comput Assist Radiol Surg; 2022 Aug; 17(8):1489-1496. PubMed ID: 35776400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.