BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35429840)

  • 21. Implications of the cattle trade network in Cameroon for regional disease prevention and control.
    Motta P; Porphyre T; Handel I; Hamman SM; Ngu Ngwa V; Tanya V; Morgan K; Christley R; Bronsvoort BM
    Sci Rep; 2017 Mar; 7():43932. PubMed ID: 28266589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting animal movement and spatial connectivity networks in shaping transmission pathways of a genetically diverse virus.
    VanderWaal K; Paploski IAD; Makau DN; Corzo CA
    Prev Vet Med; 2020 May; 178():104977. PubMed ID: 32279002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using network analysis to identify seasonal patterns and key nodes for risk-based surveillance of pig diseases in Italy.
    Crescio MI; Mastrantonio G; Bertolini S; Maurella C; Adkin A; Ingravalle F; Simons RRL; DeNardi M; Stark K; Estrada-Peña A; Ru G
    Transbound Emerg Dis; 2021 Nov; 68(6):3541-3551. PubMed ID: 33338318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonality and pathogen transmission in pastoral cattle contact networks.
    VanderWaal K; Gilbertson M; Okanga S; Allan BF; Craft ME
    R Soc Open Sci; 2017 Dec; 4(12):170808. PubMed ID: 29308225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The network of sheep movements within Great Britain: Network properties and their implications for infectious disease spread.
    Kiss IZ; Green DM; Kao RR
    J R Soc Interface; 2006 Oct; 3(10):669-77. PubMed ID: 16971335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of Network Analysis and Spread Models to Target Control Actions for Bovine Tuberculosis in a State from Brazil.
    Cardenas NC; Pozo P; Lopes FPN; Grisi-Filho JHH; Alvarez J
    Microorganisms; 2021 Jan; 9(2):. PubMed ID: 33499225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of cattle movement networks in Paraguay: Implications for the spread and control of infectious diseases.
    Avalos A; Durand B; Naranjo J; Maldonado V; Canini L; Zanella G
    PLoS One; 2022; 17(12):e0278999. PubMed ID: 36534658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread.
    Natale F; Giovannini A; Savini L; Palma D; Possenti L; Fiore G; Calistri P
    Prev Vet Med; 2009 Dec; 92(4):341-50. PubMed ID: 19775765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial and network characteristics of Irish cattle movements.
    Tratalos JA; Madden JM; McGrath G; Graham DA; Collins ÁB; More SJ
    Prev Vet Med; 2020 Oct; 183():105095. PubMed ID: 32882525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the cattle movement network and its association with the risk of bovine tuberculosis at the farm level in Castilla y Leon, Spain.
    Pozo P; VanderWaal K; Grau A; de la Cruz ML; Nacar J; Bezos J; Perez A; Minguez O; Alvarez J
    Transbound Emerg Dis; 2019 Jan; 66(1):327-340. PubMed ID: 30270505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the role of auction markets in cattle movements within Great Britain.
    Robinson SE; Christley RM
    Prev Vet Med; 2007 Sep; 81(1-3):21-37. PubMed ID: 17482296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple species animal movements: network properties, disease dynamics and the impact of targeted control actions.
    Cardenas NC; Sykes AL; Lopes FPN; Machado G
    Vet Res; 2022 Feb; 53(1):14. PubMed ID: 35193675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using social network analysis to inform disease control interventions.
    Marquetoux N; Stevenson MA; Wilson P; Ridler A; Heuer C
    Prev Vet Med; 2016 Apr; 126():94-104. PubMed ID: 26883965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The implementation of cattle market closure strategies to mitigate the foot-and-mouth disease epidemics: A contact modeling approach.
    Wiratsudakul A; Sekiguchi S
    Res Vet Sci; 2018 Dec; 121():76-84. PubMed ID: 30359814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying target areas for risk-based surveillance and control of transboundary animal diseases: a seasonal analysis of slaughter and live-trade cattle movements in Uganda.
    González-Gordon L; Porphyre T; Muwonge A; Nantima N; Ademun R; Ochwo S; Mwiine NF; Boden L; Muhanguzi D; Bronsvoort BMC
    Sci Rep; 2023 Oct; 13(1):18619. PubMed ID: 37903814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cattle movements and trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda.
    Selby R; Bardosh K; Picozzi K; Waiswa C; Welburn SC
    Parasit Vectors; 2013 Sep; 6(1):281. PubMed ID: 24289452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of cattle movements in Argentina, 2005.
    Aznar MN; Stevenson MA; Zarich L; León EA
    Prev Vet Med; 2011 Feb; 98(2-3):119-27. PubMed ID: 21122931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cattle movement patterns in Australia: an analysis of the NLIS database 2008-2012.
    Iglesias RM; East IJ
    Aust Vet J; 2015 Nov; 93(11):394-403. PubMed ID: 26503533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle.
    Böhm M; Hutchings MR; White PC
    PLoS One; 2009; 4(4):e5016. PubMed ID: 19401755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Within-group contact of cattle in dairy barns and the implications for disease transmission.
    Kleinlützum D; Weaver G; Schley D
    Res Vet Sci; 2013 Oct; 95(2):425-9. PubMed ID: 23849647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.