BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35429870)

  • 1. Perspectives in solid recovered fuel production in Bolivia: Analysis of characteristics and potential benefits.
    Ferronato N; Calle Mendoza IJ; Marconi Siñani NG; Gorritty Portillo MA; Torretta V
    Waste Manag; 2022 May; 144():324-335. PubMed ID: 35429870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels.
    Garcés D; Díaz E; Sastre H; Ordóñez S; González-LaFuente JM
    Waste Manag; 2016 Jan; 47(Pt B):164-73. PubMed ID: 26318421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When solid recovered fuel (SRF) production and consumption maximize environmental benefits? A life cycle assessment.
    Ferronato N; Giaquinta C; Conti F; Torretta V
    Waste Manag; 2024 Apr; 178():199-209. PubMed ID: 38402740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid recovered fuel: An experiment on classification and potential applications.
    Bessi C; Lombardi L; Meoni R; Canovai A; Corti A
    Waste Manag; 2016 Jan; 47(Pt B):184-94. PubMed ID: 26298482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The municipal solid waste management of La Paz (Bolivia): Challenges and opportunities for a sustainable development.
    Ferronato N; Gorritty Portillo MA; Guisbert Lizarazu EG; Torretta V; Bezzi M; Ragazzi M
    Waste Manag Res; 2018 Mar; 36(3):288-299. PubMed ID: 29424666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current issues on the production and utilization of medium-calorific solid recovered fuel: a case study on SRF for the HOTDISC technology.
    Pomberger R; Klampfl-Pernold H; Abl C
    Waste Manag Res; 2012 Apr; 30(4):413-20. PubMed ID: 22452954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of major and minor ash constituents of solid recovered fuel for co-processing in the cement industry.
    Viczek SA; Aldrian A; Pomberger R; Sarc R
    Waste Manag; 2021 May; 126():423-432. PubMed ID: 33836393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Oinas P
    Waste Manag Res; 2016 Jan; 34(1):38-46. PubMed ID: 26608898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach.
    Khan MMH; Havukainen J; Horttanainen M
    Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Aug; 34(8):1398-407. PubMed ID: 24735992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.
    Velis C; Wagland S; Longhurst P; Robson B; Sinfield K; Wise S; Pollard S
    Environ Sci Technol; 2012 Feb; 46(3):1923-31. PubMed ID: 22191490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of solid recovered fuel production from autoclave treated healthcare waste in Sultanate of Oman.
    Al-Wahaibi M; Baird J
    J Air Waste Manag Assoc; 2024 May; 74(5):304-318. PubMed ID: 38359400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania.
    Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag Res; 2015 Feb; 33(2):146-56. PubMed ID: 25568089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications.
    Garg A; Smith R; Hill D; Simms N; Pollard S
    Environ Sci Technol; 2007 Jul; 41(14):4868-74. PubMed ID: 17711195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid recovered fuels in the cement industry with special respect to hazardous waste.
    Thomanetz E
    Waste Manag Res; 2012 Apr; 30(4):404-12. PubMed ID: 22573713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.