These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 3543020)

  • 41. Bone cell populations and histomorphometric correlates to function.
    Simmons DJ; Menton DN; Russell JE; Smith R; Walker WV
    Anat Rec; 1988 Nov; 222(3):228-36. PubMed ID: 3213973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of light and dark hypertrophic chondrocytes in mouse and rat chondrocyte pellet cultures.
    Chen KS; Tatarczuch L; Ahmed Y; Huang HH; Mirams M; Pagel CN; Mackie EJ
    Tissue Cell; 2010 Apr; 42(2):121-8. PubMed ID: 20303561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation.
    Robson H; Siebler T; Stevens DA; Shalet SM; Williams GR
    Endocrinology; 2000 Oct; 141(10):3887-97. PubMed ID: 11014246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Postnatal bone elongation of the manus versus pes: analysis of the chondrocytic differentiation cascade in Mus musculus and Eptesicus fuscus.
    Farnum CE; Tinsley M; Hermanson JW
    Cells Tissues Organs; 2008; 187(1):48-58. PubMed ID: 18160802
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subcellular regulation of the ionized calcium pool in isolated growth-plate chondrocytes.
    Iannotti JP; Brighton CT; Stambough JE
    Clin Orthop Relat Res; 1989 May; (242):285-93. PubMed ID: 2706859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrastructural analysis of rat articular cartilage following treatment with dexamethasone and glycosaminoglycan-peptide complex.
    Annefeld M; Erne B; Rasser Y
    Clin Exp Rheumatol; 1990; 8(2):151-7. PubMed ID: 2338011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic studies on epiphyseal growth cartilage in the normal mouse.
    Vanky P; Brockstedt U; Hjerpe A; Wikström B
    Bone; 1998 Apr; 22(4):331-9. PubMed ID: 9556132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure.
    Alvarez J; Balbín M; Fernández M; López JM
    J Bone Miner Res; 2001 Mar; 16(3):511-24. PubMed ID: 11277269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of acute 5-fluorouracil chemotherapy and insulin-like growth factor-I pretreatment on growth plate cartilage and metaphyseal bone in rats.
    Xian CJ; Howarth GS; Cool JC; Foster BK
    Bone; 2004 Sep; 35(3):739-49. PubMed ID: 15336611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus: functional divergence is reflected in chondrocytic performance in Autopodial growth plates.
    Farnum CE; Tinsley M; Hermanson JW
    Cells Tissues Organs; 2008; 187(1):35-47. PubMed ID: 18160801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate.
    Carbajo E; López JM; Santos F; Ordóñez FA; Niño P; Rodríguez J
    J Am Soc Nephrol; 2001 Jun; 12(6):1228-1234. PubMed ID: 11373346
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of estrogen on growth plate senescence and epiphyseal fusion.
    Weise M; De-Levi S; Barnes KM; Gafni RI; Abad V; Baron J
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6871-6. PubMed ID: 11381135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The domain of hypertrophic chondrocytes in growth plates growing at different rates.
    Breur GJ; Lapierre MD; Kazmierczak K; Stechuchak KM; McCabe GP
    Calcif Tissue Int; 1997 Nov; 61(5):418-25. PubMed ID: 9351885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of growth plate mitochondria.
    Stambough JL; Brighton CT; Iannotti JP; Storey BT
    J Orthop Res; 1984; 2(3):235-46. PubMed ID: 6092592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes.
    Hatori M; Klatte KJ; Teixeira CC; Shapiro IM
    J Bone Miner Res; 1995 Dec; 10(12):1960-8. PubMed ID: 8619377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retinoic acid is a potent regulator of growth plate chondrogenesis.
    De Luca F; Uyeda JA; Mericq V; Mancilla EE; Yanovski JA; Barnes KM; Zile MH; Baron J
    Endocrinology; 2000 Jan; 141(1):346-53. PubMed ID: 10614657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered hypertrophic chondrocyte kinetics in GDF-5 deficient murine tibial growth plates.
    Mikic B; Clark RT; Battaglia TC; Gaschen V; Hunziker EB
    J Orthop Res; 2004 May; 22(3):552-6. PubMed ID: 15099634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alendronate affects cartilage resorption by regulating vascular endothelial growth factor expression in rats.
    Kang JH; Choi NK; Kang SJ; Yang SY; Ko HM; Jung JY; Kim MS; Koh JT; Kim WJ; Oh WM; Kim BY; Kim SH
    Anat Rec (Hoboken); 2010 May; 293(5):786-93. PubMed ID: 20432372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy.
    Wang J; Zhou J; Bondy CA
    FASEB J; 1999 Nov; 13(14):1985-90. PubMed ID: 10544181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The epiphyseal cartilage and growth of long bones in Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Tissue Cell; 1999 Jun; 31(3):301-7. PubMed ID: 10481302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.