These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35430277)
1. Nutrient loading decreases blue carbon by mediating fungi activities within seagrass meadows. Liu S; Trevathan-Tackett SM; Jiang Z; Cui L; Wu Y; Zhang X; Li J; Luo H; Huang X Environ Res; 2022 Sep; 212(Pt B):113280. PubMed ID: 35430277 [TBL] [Abstract][Full Text] [Related]
2. Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows. Liu S; Jiang Z; Zhang J; Wu Y; Huang X; Macreadie PI Sci Total Environ; 2017 Dec; 599-600():1479-1484. PubMed ID: 28531956 [TBL] [Abstract][Full Text] [Related]
3. Seagrass decline weakens sediment organic carbon stability. Ren Y; Liu S; Luo H; Jiang Z; Liang J; Wu Y; Huang X; Macreadie PI Sci Total Environ; 2024 Aug; 937():173523. PubMed ID: 38797423 [TBL] [Abstract][Full Text] [Related]
4. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon. Liu S; Jiang Z; Wu Y; Zhang J; Arbi I; Ye F; Huang X; Macreadie PI Mar Pollut Bull; 2017 Apr; 117(1-2):214-221. PubMed ID: 28179056 [TBL] [Abstract][Full Text] [Related]
5. Nutrient-loaded seagrass litter experiences accelerated recalcitrant organic matter decay. Liu S; Luo H; Trevathan-Tackett SM; Liang J; Wang L; Zhang X; Ren Y; Jiang Z; Wu Y; Zhao C; Huang X Sci Total Environ; 2024 Nov; 953():176251. PubMed ID: 39277004 [TBL] [Abstract][Full Text] [Related]
6. Changes in surface sediment carbon compositions in response to tropical seagrass meadow restoration. Liu S; Ren Y; Jiang Z; Luo H; Zhang X; Wu Y; Liang J; Huang X; Macreadie PI Sci Total Environ; 2023 Dec; 903():166565. PubMed ID: 37633380 [TBL] [Abstract][Full Text] [Related]
7. Nutrient loading diminishes the dissolved organic carbon drawdown capacity of seagrass ecosystems. Liu S; Deng Y; Jiang Z; Wu Y; Huang X; Macreadie PI Sci Total Environ; 2020 Oct; 740():140185. PubMed ID: 32563887 [TBL] [Abstract][Full Text] [Related]
8. Macroalgae bloom decay decreases the sediment organic carbon sequestration potential in tropical seagrass meadows of the South China Sea. Liu S; Jiang Z; Wu Y; Deng Y; Chen Q; Zhao C; Cui L; Huang X Mar Pollut Bull; 2019 Jan; 138():598-603. PubMed ID: 30660311 [TBL] [Abstract][Full Text] [Related]
9. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows. Liu S; Jiang Z; Deng Y; Wu Y; Zhang J; Zhao C; Huang D; Huang X; Trevathan-Tackett SM Microbiologyopen; 2018 Oct; 7(5):e00600. PubMed ID: 29521006 [TBL] [Abstract][Full Text] [Related]
10. Temporal and spatial variations of air-sea CO Liu S; Liang J; Jiang Z; Li J; Wu Y; Fang Y; Ren Y; Zhang X; Huang X; Macreadie PI Sci Total Environ; 2024 Feb; 910():168684. PubMed ID: 37981158 [TBL] [Abstract][Full Text] [Related]
11. Sedimentary organic carbon and nitrogen stocks of intertidal seagrass meadows in a dynamic and impacted wetland: Effects of coastal infrastructure constructions and meadow establishment time. Casal-Porras I; de Los Santos CB; Martins M; Santos R; Pérez-Lloréns JL; Brun FG J Environ Manage; 2022 Nov; 322():115841. PubMed ID: 36049302 [TBL] [Abstract][Full Text] [Related]
12. Coastal Sediment Nutrient Enrichment Alters Seagrass Blue Carbon Sink Capacity. Qin LZ; Suonan Z; Kim SH; Lee KS Environ Sci Technol; 2021 Nov; 55(22):15466-15475. PubMed ID: 34698488 [TBL] [Abstract][Full Text] [Related]
13. Eutrophication reduced the release of dissolved organic carbon from tropical seagrass roots through exudation and decomposition. Jiang Z; Li L; Fang Y; Lin J; Liu S; Wu Y; Huang X Mar Environ Res; 2022 Jul; 179():105703. PubMed ID: 35853314 [TBL] [Abstract][Full Text] [Related]
14. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Xun W; Yan R; Ren Y; Jin D; Xiong W; Zhang G; Cui Z; Xin X; Zhang R Microbiome; 2018 Sep; 6(1):170. PubMed ID: 30236158 [TBL] [Abstract][Full Text] [Related]
15. Impact of seagrass establishment, industrialization and coastal infrastructure on seagrass biogeochemical sinks. Serrano O; Lavery PS; Bongiovanni J; Duarte CM Mar Environ Res; 2020 Sep; 160():104990. PubMed ID: 32907728 [TBL] [Abstract][Full Text] [Related]
16. Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments. Dahl M; Ismail R; Braun S; Masqué P; Lavery PS; Gullström M; Arias-Ortiz A; Asplund ME; Garbaras A; Lyimo LD; Mtolera MSP; Serrano O; Webster C; Björk M Mar Environ Res; 2022 Apr; 176():105608. PubMed ID: 35358909 [TBL] [Abstract][Full Text] [Related]
17. Carbon stocks and accumulation rates in Red Sea seagrass meadows. Serrano O; Almahasheer H; Duarte CM; Irigoien X Sci Rep; 2018 Oct; 8(1):15037. PubMed ID: 30302026 [TBL] [Abstract][Full Text] [Related]
18. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Liu S; Jiang Z; Zhang J; Wu Y; Lian Z; Huang X Mar Pollut Bull; 2016 Sep; 110(1):274-280. PubMed ID: 27334726 [TBL] [Abstract][Full Text] [Related]
20. Current and future carbon stocks in coastal wetlands within the Great Barrier Reef catchments. Duarte de Paula Costa M; Lovelock CE; Waltham NJ; Young M; Adame MF; Bryant CV; Butler D; Green D; Rasheed MA; Salinas C; Serrano O; York PH; Whitt AA; Macreadie PI Glob Chang Biol; 2021 Jul; 27(14):3257-3271. PubMed ID: 33864332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]