BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35430345)

  • 1. A signature of circadian rhythm genes in driving anaplastic thyroid carcinoma malignant progression.
    Xu T; Jin T; Lu X; Pan Z; Tan Z; Zheng C; Liu Y; Hu X; Ba L; Ren H; Chen J; Zhu C; Ge M; Huang P
    Cell Signal; 2022 Jul; 95():110332. PubMed ID: 35430345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunological characteristics of immunogenic cell death genes and malignant progression driving roles of TLR4 in anaplastic thyroid carcinoma.
    Xu T; Zhu C; Song F; Zhang W; Yuan M; Pan Z; Huang P
    BMC Cancer; 2023 Nov; 23(1):1131. PubMed ID: 37990304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma.
    Xu T; Zhu C; Chen J; Song F; Ren X; Wang S; Yi X; Zhang Y; Zhang W; Hu Q; Qin H; Liu Y; Zhang S; Tan Z; Pan Z; Huang P; Ge M
    J Exp Clin Cancer Res; 2023 Jul; 42(1):182. PubMed ID: 37501099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression.
    Ma Y; Cang S; Li G; Su Y; Zhang H; Wang L; Yang J; Shi X; Qin G; Yuan H
    J Cell Physiol; 2019 Dec; 234(12):22260-22271. PubMed ID: 31081124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Bioinformatics Analysis of Master Regulators in Anaplastic Thyroid Carcinoma.
    Pan Z; Li L; Fang Q; Qian Y; Zhang Y; Zhu J; Ge M; Huang P
    Biomed Res Int; 2019; 2019():9734576. PubMed ID: 31183379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Cycle M-Phase Genes Are Highly Upregulated in Anaplastic Thyroid Carcinoma.
    Weinberger P; Ponny SR; Xu H; Bai S; Smallridge R; Copland J; Sharma A
    Thyroid; 2017 Feb; 27(2):236-252. PubMed ID: 27796151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: an integrative transcriptomics study.
    Pan Z; Li L; Qian Y; Ge X; Hu X; Zhang Y; Ge M; Huang P
    Cancer Biol Ther; 2020 Sep; 21(9):853-862. PubMed ID: 32887540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Hub Genes in Anaplastic Thyroid Carcinoma: Evidence From Bioinformatics Analysis.
    Li L; Zhu M; Huang H; Wu J; Meng D
    Technol Cancer Res Treat; 2020; 19():1533033820962135. PubMed ID: 33025856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMEM158 May Serve as a Diagnostic Biomarker for Anaplastic Thyroid Carcinoma: An Integrated Bioinformatic Analysis.
    Li HN; Du YY; Xu T; Zhang R; Wang G; Lv ZT; Li XR
    Curr Med Sci; 2020 Dec; 40(6):1137-1147. PubMed ID: 33428142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diallyl trisulphide, a H
    Zhang L; Xu S; Cheng X; Zheng J; Wang Y; Wu J; Wang X; Wu L; Yu H; Bao J
    Phytother Res; 2021 Jun; 35(6):3428-3443. PubMed ID: 33751676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1.
    Gou L; Zou H; Li B
    Cancer Biol Ther; 2019; 20(11):1355-1365. PubMed ID: 31500506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the molecular mechanisms of anaplastic thyroid carcinoma by integrated miRNA and mRNA analysis.
    Liu G; Wu K; Sheng Y
    Oncol Rep; 2016 Nov; 36(5):3005-3013. PubMed ID: 27599582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
    Hu S; Liao Y; Chen L
    Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR‑135a‑mediated c‑myc activation.
    Wang Y; Hou Z; Li D
    Mol Med Rep; 2018 Sep; 18(3):3068-3076. PubMed ID: 30015867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD.
    Bu Q; You F; Pan G; Yuan Q; Cui T; Hao L; Zhang J
    Biomed Pharmacother; 2017 Apr; 88():443-448. PubMed ID: 28122310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin-5γ-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and is associated with tumor progression, migration, and invasion by modulating signaling of EGFR.
    Garg M; Kanojia D; Okamoto R; Jain S; Madan V; Chien W; Sampath A; Ding LW; Xuan M; Said JW; Doan NB; Liu LZ; Yang H; Gery S; Braunstein GD; Koeffler HP
    J Clin Endocrinol Metab; 2014 Jan; 99(1):E62-72. PubMed ID: 24170107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic amplification of long noncoding RNA HOTAIRM1 drives anaplastic thyroid cancer progression via repressing miR-144 biogenesis.
    Zhang L; Zhang J; Li S; Zhang Y; Liu Y; Dong J; Zhao W; Yu B; Wang H; Liu J
    RNA Biol; 2021 Apr; 18(4):547-562. PubMed ID: 32951513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting DEP domain containing 1 in anaplastic thyroid carcinoma: Implications for stemness regulation and malignant phenotype suppression.
    Zhu C; Ke S; Li Y; Zhang W; Che Y; Zhang R; Huang P; Xu T
    Heliyon; 2024 Mar; 10(5):e27150. PubMed ID: 38449652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment.
    Pan Z; Xu T; Bao L; Hu X; Jin T; Chen J; Chen J; Qian Y; Lu X; Li L; Zheng G; Zhang Y; Zou X; Song F; Zheng C; Jiang L; Wang J; Tan Z; Huang P; Ge M
    Mol Cancer; 2022 Oct; 21(1):190. PubMed ID: 36192735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS1.
    Zhang W; Ji W; Zhao X
    BMC Cancer; 2019 Nov; 19(1):1093. PubMed ID: 31718618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.