BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35430449)

  • 1. In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification.
    Lin C; Xiao Z; Zhang X; Wu G
    Biochem Biophys Res Commun; 2022 Jun; 610():30-34. PubMed ID: 35430449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fast and Easy Method for Specific Detection of Circular RNA by Rolling-Circle Amplification.
    Boss M; Arenz C
    Chembiochem; 2020 Mar; 21(6):793-796. PubMed ID: 31584239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic investigation of bead-based padlock rolling circle amplification under molecular crowding conditions.
    Sasaki N; Kase C; Chou M; Nakazato G; Sato K
    Anal Biochem; 2020 Mar; 593():113596. PubMed ID: 31987862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions.
    Ishigaki Y; Sato K
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification.
    Liu Y; Zhang X; Liu M; Xu F; Zhang Q; Zhang Y; Weng X; Liu S; Du Y; Zhou X
    Anal Chim Acta; 2020 Mar; 1101():169-175. PubMed ID: 32029108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B
    Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel
    Rao X; Zheng L; Wei K; Li M; Jiang M; Qiu J; Zhou Y; Ke R; Lin C
    Microbiol Spectr; 2023 Feb; 11(2):e0389622. PubMed ID: 36809088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection.
    Jain S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Jun; 146(13):4340-4347. PubMed ID: 34106115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Universal Strategy for Enhancing the Circulating miRNAs' Detection Performance of Rolling Circle Amplification by Using a Dual-Terminal Stem-Loop Padlock.
    Xu H; Wu X; Liu Q; Yang C; Shen M; Wang Y; Liu S; Zhao S; Xiao T; Sun M; Ding Z; Bao J; Chen M; Gao M
    ACS Nano; 2024 Jan; 18(1):436-450. PubMed ID: 38149638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification.
    Li Z; Li W; Cheng Y; Hao L
    Analyst; 2008 Sep; 133(9):1164-8. PubMed ID: 18709189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Sequencing: A High-Throughput, Multi-Targeted Gene Expression Profiling Technique for Cell Typing in Tissue Sections.
    Hilscher MM; Gyllborg D; Yokota C; Nilsson M
    Methods Mol Biol; 2020; 2148():313-329. PubMed ID: 32394391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Fluorescent G-Quadruplex Nanowires for Label-Free and Accurate Monitoring of Circular RNAs in Breast Cancer Cells and Tissues with Low Background.
    Wei SH; Hu J; Sheng Z; Zhang Q; Zhang J; Zhang B; Liu M; Zhang CY
    Anal Chem; 2024 Jan; 96(1):599-605. PubMed ID: 38156620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sanger Sequencing to Determine the Full-Length Sequence of Circular RNAs.
    Singh S; Das A; Panda AC
    Methods Mol Biol; 2024; 2765():93-105. PubMed ID: 38381335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular crowding improves bead-based padlock rolling circle amplification.
    Sasaki N; Gunji Y; Kase C; Sato K
    Anal Biochem; 2017 Feb; 519():15-18. PubMed ID: 27940012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection.
    Liu D; Li W; Yang M; Qiu L; Pian H; Huang Y; Chen M; Zheng Z
    Biosens Bioelectron; 2021 Nov; 192():113507. PubMed ID: 34330037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated One-Double-Z Pair BaseScope™ for CircRNA In Situ Hybridization.
    Nielsen BS; Møller T; Kjems J
    Methods Mol Biol; 2020; 2148():379-388. PubMed ID: 32394395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Single-Molecule RNA Genotyping Using Padlock Probes and Rolling Circle Amplification.
    Krzywkowski T; Hauling T; Nilsson M
    Methods Mol Biol; 2017; 1492():59-76. PubMed ID: 27822856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.