BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35430449)

  • 21. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z
    Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rolling Circle cDNA Synthesis Uncovers Circular RNA Splice Variants.
    Das A; Rout PK; Gorospe M; Panda AC
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bead-based padlock rolling circle amplification for single DNA molecule counting.
    Sato K; Ishii R; Sasaki N; Sato K; Nilsson M
    Anal Biochem; 2013 Jun; 437(1):43-5. PubMed ID: 23467098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rolling circle extension-assisted loop-mediated isothermal amplification (Rol-LAMP) method for locus-specific and visible detection of RNA N6-methyladenosine.
    Li J; Zhou J; Xia Y; Rui Y; Yang X; Xie G; Jiang G; Wang H
    Nucleic Acids Res; 2023 May; 51(9):e51. PubMed ID: 36971119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues.
    Jiang M; Liu L; Hong C; Chen D; Yao X; Chen X; Lin C; Ke R
    RNA; 2019 Aug; 25(8):1038-1046. PubMed ID: 31064786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS.
    Stougaard M; Lohmann JS; Zajac M; Hamilton-Dutoit S; Koch J
    BMC Biotechnol; 2007 Oct; 7():69. PubMed ID: 17945012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of Individual RNA in Fixed Cells and Tissues by Chromogenic ISH.
    Jiang M; Lin C; Ke R
    Bio Protoc; 2020 Feb; 10(3):e3510. PubMed ID: 33654735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Rolling Circle Amplification-Based Detection of SARS-CoV-2 with Multi-Region Padlock Hybridization.
    Kumari R; Lim JW; Sullivan MR; Malampy R; Baush C; Smolina I; Robin H; Demidov VV; Ugolini GS; Auclair JR; Konry T
    Diagnostics (Basel); 2022 Sep; 12(9):. PubMed ID: 36140653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of individual microRNA molecules in fixed cells and tissues using target-primed padlock probe assay.
    Lin C; Jiang M; Duan S; Qiu J; Hong Y; Wang X; Chen X; Ke R
    Biochem Biophys Res Commun; 2020 Jun; 526(3):607-611. PubMed ID: 32247612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells.
    Chen J; Zhang Y; Chen D; Wang T; Yin W; Yang HH; Xu Y; Chen JX; Dai Z; Zou X
    Anal Chim Acta; 2021 May; 1160():338463. PubMed ID: 33894961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an in situ assay for simultaneous detection of the genomic and replicative form of PCV2 using padlock probes and rolling circle amplification.
    Henriksson S; Blomström AL; Fuxler L; Fossum C; Berg M; Nilsson M
    Virol J; 2011 Jan; 8():37. PubMed ID: 21261961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplexed in situ RNA imaging by combFISH.
    Liu Y; Chen J; Lin C; Ke R
    Anal Bioanal Chem; 2024 Jul; 416(16):3765-3774. PubMed ID: 38775954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in signal amplification methods for in situ hybridization.
    Qian X; Lloyd RV
    Diagn Mol Pathol; 2003 Mar; 12(1):1-13. PubMed ID: 12605030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CE combined with rolling circle amplification for sensitive DNA detection.
    Li N; Li J; Zhong W
    Electrophoresis; 2008 Jan; 29(2):424-32. PubMed ID: 18080251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific and sensitive detection of CircRNA based on netlike hybridization chain reaction.
    Dong J; Zeng Z; Sun R; Zhang X; Cheng Z; Chen C; Zhu Q
    Biosens Bioelectron; 2021 Nov; 192():113508. PubMed ID: 34284304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification.
    Long Y; Zhou X; Xing D
    Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.