These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 35430527)
1. Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes. Li C; Zhou M; Wang H; Wang J; Huang L Talanta; 2022 Aug; 245():123444. PubMed ID: 35430527 [TBL] [Abstract][Full Text] [Related]
2. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650 [TBL] [Abstract][Full Text] [Related]
3. A colorimetric and photothermal dual-mode biosensing platform based on nanozyme-functionalized flower-like DNA structures for tumor-derived exosome detection. Zhang X; Zhu X; Li Y; Hai X; Bi S Talanta; 2023 Jun; 258():124456. PubMed ID: 36940568 [TBL] [Abstract][Full Text] [Related]
4. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Huang L; Wang DB; Singh N; Yang F; Gu N; Zhang XE Nanoscale; 2018 Nov; 10(43):20289-20295. PubMed ID: 30371719 [TBL] [Abstract][Full Text] [Related]
5. Horseradish peroxidase-encapsulated DNA nanoflowers: An innovative signal-generation tag for colorimetric biosensor. Zeng R; Wang J; Wang Q; Tang D; Lin Y Talanta; 2021 Jan; 221():121600. PubMed ID: 33076131 [TBL] [Abstract][Full Text] [Related]
6. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Zhao Z; Yang S; Tang X; Feng L; Ding Z; Chen Z; Luo X; Deng R; Sheng J; Xie S; Chang K; Chen M Biosens Bioelectron; 2024 Feb; 246():115841. PubMed ID: 38006701 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Liang K; Zhai S; Zhang Z; Fu X; Shao J; Lin Z; Qiu B; Chen GN Analyst; 2014 Sep; 139(17):4330-4. PubMed ID: 24996292 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive Electrochemiluminescence Biosensor Based on DNA-Bio-Bar-Code and Hybridization Chain Reaction Dual Signal Amplification for Exosomes Detection. Meng X; Pang X; Liu X; Luo S; Zhang X; Dong H Anal Chem; 2024 Aug; 96(32):13299-13307. PubMed ID: 39090799 [TBL] [Abstract][Full Text] [Related]
9. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Li D; Cheng W; Yan Y; Zhang Y; Yin Y; Ju H; Ding S Talanta; 2016; 146():470-6. PubMed ID: 26695292 [TBL] [Abstract][Full Text] [Related]
10. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M Abnous K; Danesh NM; Ramezani M; Alibolandi M; Nameghi MA; Zavvar TS; Taghdisi SM Anal Chim Acta; 2021 Jun; 1165():338549. PubMed ID: 33975697 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive protein and exosome analysis based on a rolling circle amplification assisted-CRISPR/Cas12a strategy. Shi J; Lei C; Fan W; Sun Y; Liu C Talanta; 2024 Jun; 273():125906. PubMed ID: 38490023 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric aptasensor for the detection of mercury based on signal intensification by rolling circle amplification. Wu S; Yu Q; He C; Duan N Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117387. PubMed ID: 31352141 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 mediated triple signal amplification platform for high selective and sensitive detection of single base mutations. Zhou M; Wang H; Li C; Yan C; Qin P; Huang L Anal Chim Acta; 2022 Oct; 1230():340421. PubMed ID: 36192055 [TBL] [Abstract][Full Text] [Related]
14. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Zhu D; Yan Y; Lei P; Shen B; Cheng W; Ju H; Ding S Anal Chim Acta; 2014 Oct; 846():44-50. PubMed ID: 25220140 [TBL] [Abstract][Full Text] [Related]
15. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology. Hu B; Guo J; Xu Y; Wei H; Zhao G; Guan Y Anal Bioanal Chem; 2017 Aug; 409(20):4819-4825. PubMed ID: 28689323 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric liquid crystal-based assay for the ultrasensitive detection of AFB1 assisted with rolling circle amplification. Wu W; Xia S; Zhao M; Ping J; Lin JM; Hu Q Anal Chim Acta; 2022 Aug; 1220():340065. PubMed ID: 35868704 [TBL] [Abstract][Full Text] [Related]
17. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Chen C; Luo M; Ye T; Li N; Ji X; He Z Analyst; 2015 Jul; 140(13):4515-20. PubMed ID: 25988199 [TBL] [Abstract][Full Text] [Related]
18. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364 [TBL] [Abstract][Full Text] [Related]
19. Rolling circle amplification promoted magneto-controlled photoelectrochemical biosensor for organophosphorus pesticides based on dissolution of core-shell MnO Tang J; Li J; Xiong P; Sun Y; Zeng Z; Tian X; Tang D Mikrochim Acta; 2020 Jul; 187(8):450. PubMed ID: 32676787 [TBL] [Abstract][Full Text] [Related]
20. Rolling circle amplification based colorimetric determination of Staphylococcus aureus. Li Y; Wang J; Wang S; Wang J Mikrochim Acta; 2020 Jan; 187(2):119. PubMed ID: 31927667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]