These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35430543)

  • 21. Preparation and refinement of model protein-ligand complexes.
    Orry AJ; Abagyan R
    Methods Mol Biol; 2012; 857():351-73. PubMed ID: 22323230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GalaxySagittarius: Structure- and Similarity-Based Prediction of Protein Targets for Druglike Compounds.
    Yang J; Kwon S; Bae SH; Park KM; Yoon C; Lee JH; Seok C
    J Chem Inf Model; 2020 Jun; 60(6):3246-3254. PubMed ID: 32401021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of ligand templates using local structure alignment for structure-based drug design.
    Lee HS; Im W
    J Chem Inf Model; 2012 Oct; 52(10):2784-95. PubMed ID: 22978550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes.
    Paggi JM; Belk JA; Hollingsworth SA; Villanueva N; Powers AS; Clark MJ; Chemparathy AG; Tynan JE; Lau TK; Sunahara RK; Dror RO
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34921117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting protein-ligand binding sites based on an improved geometric algorithm.
    He J; Wei DQ; Wang JF; Chou KC
    Protein Pept Lett; 2011 Oct; 18(10):997-1001. PubMed ID: 21592081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach?
    Kollar J; Frecer V
    J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new method to estimate ligand-receptor energetics.
    Bock JR; Gough DA
    Mol Cell Proteomics; 2002 Nov; 1(11):904-10. PubMed ID: 12488466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico prediction of binding sites on proteins.
    Leis S; Schneider S; Zacharias M
    Curr Med Chem; 2010; 17(15):1550-62. PubMed ID: 20166931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Docking ligands onto binding site representations derived from proteins built by homology modelling.
    Schafferhans A; Klebe G
    J Mol Biol; 2001 Mar; 307(1):407-27. PubMed ID: 11243828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Computer drug design based on analysis of a target macromolecule structure. I. Search and description of a ligand binding site in a target molecule].
    Ivanov AS; Dubanov AV; Skvortsov VS; Archakov AI
    Vopr Med Khim; 2002; 48(3):304-15. PubMed ID: 12243090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving detection of protein-ligand binding sites with 3D segmentation.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Sci Rep; 2020 Mar; 10(1):5035. PubMed ID: 32193447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target?
    Ramírez D; Caballero J
    Int J Mol Sci; 2016 Apr; 17(4):. PubMed ID: 27104528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach.
    Gana R; Rao S; Huang H; Wu C; Vasudevan S
    BMC Struct Biol; 2013 Apr; 13():6. PubMed ID: 23617634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Prediction of Compound-Protein Interactions for Orphan Targets Using CGBVS.
    Kanai C; Kawasaki E; Murakami R; Morita Y; Yoshimori A
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.