These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35430595)

  • 1. Modelling epidemic spread in cities using public transportation as a proxy for generalized mobility trends.
    Malik O; Gong B; Moussawi A; Korniss G; Szymanski BK
    Sci Rep; 2022 Apr; 12(1):6372. PubMed ID: 35430595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the Transition From Subexponential to the Exponential Transmission of SARS-CoV-2 in Chennai, India: Epidemic Nowcasting.
    Krishnamurthy K; Ambikapathy B; Kumar A; Britto L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e21152. PubMed ID: 32609621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Public transit mobility as a leading indicator of COVID-19 transmission in 40 cities during the first wave of the pandemic.
    Soucy JR; Sturrock SL; Berry I; Westwood DJ; Daneman N; Fisman D; MacFadden DR; Brown KA
    PeerJ; 2024; 12():e17455. PubMed ID: 38832041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between mobility in mass transport and mortality due to COVID-19: A comparison of Mexico City, New York, and Madrid from a data science perspective.
    Vega-Villalobos A; Almanza-Ortega NN; Torres-Poveda K; Pérez-Ortega J; Barahona I
    PLoS One; 2022; 17(3):e0264713. PubMed ID: 35298483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the paths of COVID-19 in a large city based on public transportation data.
    Araújo JLB; Oliveira EA; Lima Neto AS; Andrade JS; Furtado V
    Sci Rep; 2023 Apr; 13(1):5761. PubMed ID: 37031258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding small-scale COVID-19 transmission dynamics with the Granger causality test.
    Romero García C; Briz-Redón Á; Iftimi A; Lozano M; De Andrés J; Landoni G; Zanin M
    Arch Environ Occup Health; 2023; 78(5):273-281. PubMed ID: 36640118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of subway travel in an influenza epidemic: a New York City simulation.
    Cooley P; Brown S; Cajka J; Chasteen B; Ganapathi L; Grefenstette J; Hollingsworth CR; Lee BY; Levine B; Wheaton WD; Wagener DK
    J Urban Health; 2011 Oct; 88(5):982-95. PubMed ID: 21826584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding small Chinese cities as COVID-19 hotspots with an urban epidemic hazard index.
    Li T; Luo J; Huang C
    Sci Rep; 2021 Jul; 11(1):14663. PubMed ID: 34282250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spread of COVID-19 in China: analysis from a city-based epidemic and mobility model.
    Wei Y; Wang J; Song W; Xiu C; Ma L; Pei T
    Cities; 2021 Mar; 110():103010. PubMed ID: 33162634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Role of the Subways in the Initial Spread of SARS-CoV-2 in New York City.
    Harris JE
    Front Public Health; 2021; 9():754767. PubMed ID: 35004575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fingerprinting cities: differentiating subway microbiome functionality.
    Zhu C; Miller M; Lusskin N; Mahlich Y; Wang Y; Zeng Z; Bromberg Y
    Biol Direct; 2019 Oct; 14(1):19. PubMed ID: 31666099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subway Ridership, Crowding, or Population Density: Determinants of COVID-19 Infection Rates in New York City.
    Hamidi S; Hamidi I
    Am J Prev Med; 2021 May; 60(5):614-620. PubMed ID: 33888260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas.
    Kumar N; Oke J; Nahmias-Biran BH
    Sci Rep; 2021 Nov; 11(1):22665. PubMed ID: 34811414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did the COVID-19 vaccine rollout impact transportation demand? A case study in New York City.
    Drummond J; Hasnine MS
    J Transp Health; 2023 Jan; 28():101539. PubMed ID: 36466107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of Brazil's transport network on the spread of COVID-19.
    Silva GC; Ribeiro EMS
    Sci Rep; 2023 Feb; 13(1):2240. PubMed ID: 36755064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On mobility trends analysis of COVID-19 dissemination in Mexico City.
    Prieto K; Chávez-Hernández MV; Romero-Leiton JP
    PLoS One; 2022; 17(2):e0263367. PubMed ID: 35143548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis and solution for intercity travel behaviors during holidays in the post-epidemic era based on big data.
    Zhang X; Gao J
    PLoS One; 2023; 18(7):e0288510. PubMed ID: 37467244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crowding and the shape of COVID-19 epidemics.
    Rader B; Scarpino SV; Nande A; Hill AL; Adlam B; Reiner RC; Pigott DM; Gutierrez B; Zarebski AE; Shrestha M; Brownstein JS; Castro MC; Dye C; Tian H; Pybus OG; Kraemer MUG
    Nat Med; 2020 Dec; 26(12):1829-1834. PubMed ID: 33020651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.