These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35430679)
1. Magnetic resonance temperature imaging of laser-induced thermotherapy using proton resonance frequency shift: evaluation of different sequences in phantom and porcine brain at 7 T. Xu G; Zhao Z; Xu K; Zhu J; Roe AW; Xu B; Zhang X; Li J; Xu D Jpn J Radiol; 2022 Aug; 40(8):768-780. PubMed ID: 35430679 [TBL] [Abstract][Full Text] [Related]
2. MR-based thermometry of laser induced thermotherapy: temperature accuracy and temporal resolution in vitro at 0.2 and 1.5 T magnetic field strengths. Vogl TJ; Huebner F; Naguib NN; Bauer RW; Mack MG; Nour-Eldin NE; Meister D Lasers Surg Med; 2012 Mar; 44(3):257-65. PubMed ID: 22407543 [TBL] [Abstract][Full Text] [Related]
3. Temperature imaging of laser-induced thermotherapy (LITT) by MRI: evaluation of different sequences in phantom. Bazrafshan B; Hübner F; Farshid P; Hammerstingl R; Paul J; Vogel V; Mäntele W; Vogl TJ Lasers Med Sci; 2014 Jan; 29(1):173-83. PubMed ID: 23535892 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance temperature imaging of laser-induced thermotherapy: assessment of fast sequences in ex vivo porcine liver. Bazrafshan B; Hübner F; Farshid P; Paul J; Hammerstingl R; Vogel V; Mäntele W; Vogl TJ Future Oncol; 2013 Jul; 9(7):1039-50. PubMed ID: 23837766 [TBL] [Abstract][Full Text] [Related]
5. [MR thermometry for laser-induced thermotherapy at 1.5 Tesla]. Meister D; Hübner F; Mack M; Vogl TJ Rofo; 2007 May; 179(5):497-505. PubMed ID: 17436184 [TBL] [Abstract][Full Text] [Related]
6. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470 [TBL] [Abstract][Full Text] [Related]
7. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T. Chen Y; Ge M; Ali R; Jiang H; Huang X; Qiu B Biomed Eng Online; 2018 Apr; 17(1):39. PubMed ID: 29631576 [TBL] [Abstract][Full Text] [Related]
8. Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies. Cernicanu A; Lepetit-Coiffe M; Roland J; Becker CD; Terraz S NMR Biomed; 2008 Oct; 21(8):849-58. PubMed ID: 18574794 [TBL] [Abstract][Full Text] [Related]
10. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Feddersen TV; Poot DHJ; Paulides MM; Salim G; van Rhoon GC; Hernandez-Tamames JA Int J Hyperthermia; 2023; 40(1):2184399. PubMed ID: 36907223 [TBL] [Abstract][Full Text] [Related]
11. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Kneepkens E; Heijman E; Keupp J; Weiss S; Nicolay K; Grüll H Invest Radiol; 2017 Oct; 52(10):620-630. PubMed ID: 28598900 [TBL] [Abstract][Full Text] [Related]
12. Fiber Bragg Grating Sensors for Performance Evaluation of Fast Magnetic Resonance Thermometry on Synthetic Phantom. De Landro M; Ianniello J; Yon M; Wolf A; Quesson B; Schena E; Saccomandi P Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198326 [TBL] [Abstract][Full Text] [Related]
13. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase. Salomir R; Viallon M; Kickhefel A; Roland J; Morel DR; Petrusca L; Auboiroux V; Goget T; Terraz S; Becker CD; Gross P IEEE Trans Med Imaging; 2012 Feb; 31(2):287-301. PubMed ID: 21937345 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous fat-referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations. Kim K; Breton E; Gangi A; Vappou J Magn Reson Med; 2020 Jul; 84(1):339-347. PubMed ID: 31823418 [TBL] [Abstract][Full Text] [Related]
15. Improved MR temperature imaging at 0.5 T using view-sharing accelerated multiecho thermometry for MR-guided laser interstitial thermal therapy. Pan Z; Liu S; Hu J; Luo H; Han M; Sun H; Liu W; Wu Z; Guo H NMR Biomed; 2023 Aug; 36(8):e4933. PubMed ID: 36941216 [TBL] [Abstract][Full Text] [Related]
16. MRI thermometry in phantoms by use of the proton resonance frequency shift method: application to interstitial laser thermotherapy. Olsrud J; Wirestam R; Brockstedt S; Nilsson AM; Tranberg KG; Ståhlberg F; Persson BR Phys Med Biol; 1998 Sep; 43(9):2597-613. PubMed ID: 9755948 [TBL] [Abstract][Full Text] [Related]
18. Proton resonance frequency-based thermometry for aqueous and adipose tissues. Zong S; Shen G; Mei CS Med Phys; 2021 Oct; 48(10):5651-5660. PubMed ID: 34468019 [TBL] [Abstract][Full Text] [Related]
19. A phase-cycled temperature-sensitive fast spin echo sequence with conductivity bias correction for monitoring of mild RF hyperthermia with PRFS. Wu M; Mulder HT; Zur Y; Lechner-Greite S; Menzel MI; Paulides MM; van Rhoon GC; Haase A MAGMA; 2019 Jun; 32(3):369-380. PubMed ID: 30515641 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Kickhefel A; Roland J; Weiss C; Schick F Phys Med; 2010 Oct; 26(4):192-201. PubMed ID: 20096617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]