These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35431371)
1. The impact of public health emergencies on hotel demand - Estimation from a new foresight perspective on the COVID-19. He LY; Li H; Bi JW; Yang JJ; Zhou Q Ann Tour Res; 2022 May; 94():103402. PubMed ID: 35431371 [TBL] [Abstract][Full Text] [Related]
2. Design of Machine Learning Algorithm for Tourism Demand Prediction. Yu N; Chen J Comput Math Methods Med; 2022; 2022():6352381. PubMed ID: 35720035 [TBL] [Abstract][Full Text] [Related]
3. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction. Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419 [TBL] [Abstract][Full Text] [Related]
4. A data-driven combined prediction method for the demand for intensive care unit healthcare resources in public health emergencies. Zhang W; Li X BMC Health Serv Res; 2024 Apr; 24(1):477. PubMed ID: 38632553 [TBL] [Abstract][Full Text] [Related]
5. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems. Zeng L; Li Z; Yang J; Xu X Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314 [TBL] [Abstract][Full Text] [Related]
6. A decomposition-ensemble approach for tourism forecasting. Xie G; Qian Y; Wang S Ann Tour Res; 2020 Mar; 81():102891. PubMed ID: 32501311 [TBL] [Abstract][Full Text] [Related]
7. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management. Zhang L; Wang C; Hu W; Wang X; Wang H; Sun X; Ren W; Feng Y Environ Res; 2024 May; 248():118267. PubMed ID: 38244969 [TBL] [Abstract][Full Text] [Related]
8. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM. Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695 [TBL] [Abstract][Full Text] [Related]
9. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm. Yang S; Chen D; Li S; Wang W Sci Total Environ; 2020 May; 716():137117. PubMed ID: 32074939 [TBL] [Abstract][Full Text] [Related]
10. A novel RF-CEEMD-LSTM model for predicting water pollution. Ruan J; Cui Y; Song Y; Mao Y Sci Rep; 2023 Nov; 13(1):20901. PubMed ID: 38017113 [TBL] [Abstract][Full Text] [Related]
11. Statistical analysis of the impacts of COVID-19 pandemic on the small and large-scale tourism sectors in developing countries. Kumar P; Ekka P Environ Dev Sustain; 2023 Mar; ():1-35. PubMed ID: 37362971 [TBL] [Abstract][Full Text] [Related]
12. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
13. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction. Wang W; Tang Q Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980 [TBL] [Abstract][Full Text] [Related]
14. A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning. Liu S; Wan Y; Yang W; Tan A; Jian J; Lei X Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612939 [TBL] [Abstract][Full Text] [Related]
15. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model. Chen L; Liu X; Zeng C; He X; Chen F; Zhu B Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299 [TBL] [Abstract][Full Text] [Related]
16. Short-Term Energy Demand Forecast in Hotels Using Hybrid Intelligent Modeling. Casteleiro-Roca JL; Gómez-González JF; Calvo-Rolle JL; Jove E; Quintián H; Gonzalez Diaz B; Mendez Perez JA Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151324 [TBL] [Abstract][Full Text] [Related]
17. Forecasting emergency medicine reserve demand with a novel decomposition-ensemble methodology. Jiang-Ning L; Xian-Liang S; An-Qiang H; Ze-Fang H; Yu-Xuan K; Dong L Complex Intell Systems; 2023; 9(3):2285-2295. PubMed ID: 34777958 [TBL] [Abstract][Full Text] [Related]
18. DESA: a novel hybrid decomposing-ensemble and spatiotemporal attention model for PM Fang S; Li Q; Karimian H; Liu H; Mo Y Environ Sci Pollut Res Int; 2022 Aug; 29(36):54150-54166. PubMed ID: 35294690 [TBL] [Abstract][Full Text] [Related]
19. Ensemble streamflow forecasting based on variational mode decomposition and long short term memory. Sun X; Zhang H; Wang J; Shi C; Hua D; Li J Sci Rep; 2022 Jan; 12(1):518. PubMed ID: 35017569 [TBL] [Abstract][Full Text] [Related]
20. Energy forecasting of the building-integrated photovoltaic façade using hybrid LSTM. Sarkar S; Karthick A; Kumar Chinnaiyan V; Patil PP Environ Sci Pollut Res Int; 2023 Apr; 30(16):45977-45985. PubMed ID: 36715808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]