These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35431456)

  • 1. An adaptive decision-making system supported on user preference predictions for human-robot interactive communication.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MÁ
    User Model User-adapt Interact; 2023; 33(2):359-403. PubMed ID: 35431456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.
    Chemuturi R; Amirabdollahian F; Dautenhahn K
    J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction.
    Stange S; Hassan T; Schröder F; Konkol J; Kopp S
    Front Artif Intell; 2022; 5():866920. PubMed ID: 35573901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the task effectiveness and user satisfaction with different operation modes of an assistive bathing robot in older adults.
    Werner C; Dometios AC; Tzafestas CS; Maragos P; Bauer JM; Hauer K
    Assist Technol; 2022 Mar; 34(2):222-231. PubMed ID: 32286163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot education peers in a situated primary school study: Personalisation promotes child learning.
    Baxter P; Ashurst E; Read R; Kennedy J; Belpaeme T
    PLoS One; 2017; 12(5):e0178126. PubMed ID: 28542648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bio-Inspired Endogenous Attention-Based Architecture for a Social Robot.
    Marques-Villarroya S; Castillo JC; Gamboa-Montero JJ; Sevilla-Salcedo J; Salichs MA
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group Emotion Detection Based on Social Robot Perception.
    Quiroz M; Patiño R; Diaz-Amado J; Cardinale Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
    de Greeff J; Belpaeme T
    PLoS One; 2015; 10(9):e0138061. PubMed ID: 26422143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling Multimodal Dialogues for Social Robots Using Communicative Acts.
    Fernández-Rodicio E; Castro-González Á; Alonso-Martín F; Maroto-Gómez M; Salichs MÁ
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children.
    Calderita LV; Manso LJ; Bustos P; Suárez-Mejías C; Fernández F; Bandera A
    JMIR Rehabil Assist Technol; 2014 Oct; 1(1):e1. PubMed ID: 28582242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring and Analysis of Youth Sports Physique by Intelligent Medical Robot Based on Cognitive Computing.
    Pei Y; Chen Y
    Comput Intell Neurosci; 2022; 2022():5358059. PubMed ID: 35733566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration.
    Melidis C; Iizuka H; Marocco D
    Cogn Process; 2018 May; 19(2):245-264. PubMed ID: 28585090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Socially Adaptable Framework for Human-Robot Interaction.
    Tanevska A; Rea F; Sandini G; Cañamero L; Sciutti A
    Front Robot AI; 2020; 7():121. PubMed ID: 33501287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biological Inspired Cognitive Framework for Memory-Based Multi-Sensory Joint Attention in Human-Robot Interactive Tasks.
    Eldardeer O; Gonzalez-Billandon J; Grasse L; Tata M; Rea F
    Front Neurorobot; 2021; 15():648595. PubMed ID: 34887738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications.
    Naheem K; Elsharkawy A; Koo D; Lee Y; Kim M
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Socially Aware Robot Obstacle Avoidance Considering Human Intention and Preferences.
    Smith T; Chen Y; Hewitt N; Hu B; Gu Y
    Int J Soc Robot; 2023; 15(4):661-678. PubMed ID: 34249182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control.
    Veselic S; Zito C; Farina D
    Front Neurorobot; 2021; 15():695022. PubMed ID: 34658829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.