These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35431852)

  • 1. Building Effective Machine Learning Models for Ankle Joint Power Estimation During Walking Using FMG Sensors.
    Heeb O; Barua A; Menon C; Jiang X
    Front Neurorobot; 2022; 16():836779. PubMed ID: 35431852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: Building effective machine learning models for ankle joint power estimation during walking using FMG sensors.
    Frontiers Production Office
    Front Neurorobot; 2023; 17():1187128. PubMed ID: 37056365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of User-Applied Isometric Force/Torque Using Upper Extremity Force Myography.
    Sakr M; Jiang X; Menon C
    Front Robot AI; 2019; 6():120. PubMed ID: 33501135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CNN-LSTM model for six human ankle movements classification on different loads.
    Li M; Wang J; Yang S; Xie J; Xu G; Luo S
    Front Hum Neurosci; 2023; 17():1101938. PubMed ID: 36968785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Force Myography Placement For Maximizing Locomotion Classification Accuracy in Transfemoral Amputees: A Pilot Study.
    Godiyal AK; Joshi D
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):959-968. PubMed ID: 32776884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Iontronic FMG for Classification of Muscular Locomotion.
    Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Exerted Hand Force via Force Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A Preliminary Investigation.
    Zakia U; Menon C
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-based human joint angular velocity estimation during squat and walking on a treadmill actions.
    Kumar KS; Jamsarndorj A; Jung D; Lee D; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2186-2190. PubMed ID: 34891721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals.
    Xiao ZG; Menon C
    JMIR Rehabil Assist Technol; 2017 May; 4(1):e5. PubMed ID: 28582263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Channel Selection for Gesture Classification for Prosthesis Control Using Force Myography: A Case Study.
    Ahmadizadeh C; Pousett B; Menon C
    Front Bioeng Biotechnol; 2019; 7():331. PubMed ID: 31921794
    [No Abstract]   [Full Text] [Related]  

  • 20. Wrist-worn wearables based on force myography: on the significance of user anthropometry.
    Delva ML; Lajoie K; Khoshnam M; Menon C
    Biomed Eng Online; 2020 Jun; 19(1):46. PubMed ID: 32532358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.