BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35433318)

  • 1. Machine learning algorithm using publicly available echo database for simplified "visual estimation" of left ventricular ejection fraction.
    Blaivas M; Blaivas L
    World J Exp Med; 2022 Mar; 12(2):16-25. PubMed ID: 35433318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making Artificial Intelligence Lemonade Out of Data Lemons: Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm.
    Blaivas M; Blaivas LN; Campbell K; Thomas J; Shah S; Yadav K; Liu YT
    J Ultrasound Med; 2022 Aug; 41(8):2059-2069. PubMed ID: 34820867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert.
    Asch FM; Poilvert N; Abraham T; Jankowski M; Cleve J; Adams M; Romano N; Hong H; Mor-Avi V; Martin RP; Lang RM
    Circ Cardiovasc Imaging; 2019 Sep; 12(9):e009303. PubMed ID: 31522550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients.
    Reddy CD; Lopez L; Ouyang D; Zou JY; He B
    J Am Soc Echocardiogr; 2023 May; 36(5):482-489. PubMed ID: 36754100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Stress Test of Artificial Intelligence: Can Deep Learning Models Trained From Formal Echocardiography Accurately Interpret Point-of-Care Ultrasound?
    Crockett D; Kelly C; Brundage J; Jones J; Ockerse P
    J Ultrasound Med; 2022 Dec; 41(12):3003-3012. PubMed ID: 35560254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training.
    Jafari MH; Girgis H; Van Woudenberg N; Liao Z; Rohling R; Gin K; Abolmaesumi P; Tsang T
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1027-1037. PubMed ID: 30941679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution.
    Asch FM; Mor-Avi V; Rubenson D; Goldstein S; Saric M; Mikati I; Surette S; Chaudhry A; Poilvert N; Hong H; Horowitz R; Park D; Diaz-Gomez JL; Boesch B; Nikravan S; Liu RB; Philips C; Thomas JD; Martin RP; Lang RM
    Circ Cardiovasc Imaging; 2021 Jun; 14(6):e012293. PubMed ID: 34126754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Validation of an Artificial Intelligence-Based Tool for Automatic Estimation of Left Ventricular Ejection Fraction and Strain in Echocardiography: Protocol for a Two-Phase Prospective Cohort Study.
    Hadjidimitriou S; Pagourelias E; Apostolidis G; Dimaridis I; Charisis V; Bakogiannis C; Hadjileontiadis L; Vassilikos V
    JMIR Res Protoc; 2023 Mar; 12():e44650. PubMed ID: 36912875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based automated left ventricular ejection fraction assessment using 2-D echocardiography.
    Liu X; Fan Y; Li S; Chen M; Li M; Hau WK; Zhang H; Xu L; Lee AP
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H390-H399. PubMed ID: 34170197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracardiac ultrasound measurement of volumes and ejection fraction in normal, infarcted, and aneurysmal left ventricles using a 10-MHz ultrasound catheter.
    Chen C; Guerrero JL; Vazquez de Prada JA; Padial LR; Schwammenthal E; Chen MH; Jiang L; Svizzero T; Simon H; Thomas JD
    Circulation; 1994 Sep; 90(3):1481-91. PubMed ID: 8087955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence versus expert: a comparison of rapid visual inferior vena cava collapsibility assessment between POCUS experts and a deep learning algorithm.
    Blaivas M; Adhikari S; Savitsky EA; Blaivas LN; Liu YT
    J Am Coll Emerg Physicians Open; 2020 Oct; 1(5):857-864. PubMed ID: 33145532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation.
    Thavendiranathan P; Liu S; Verhaert D; Calleja A; Nitinunu A; Van Houten T; De Michelis N; Simonetti O; Rajagopalan S; Ryan T; Vannan MA
    JACC Cardiovasc Imaging; 2012 Mar; 5(3):239-51. PubMed ID: 22421168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Left ventricular volume and ejection fraction by the axius auto ejection fraction method: comparison with manual trace method and visual assessment of ejection fraction].
    Kawai J; Tanabe K; Yamaguchi K; Hosoi Y; Watanabe M; Tani T; Yagi T; Fujii Y; Konda T; Sumida T; Nakamura H; Ui K; Yoneyama A; Morioka S; Kihara Y
    J Cardiol; 2007 Mar; 49(3):125-34. PubMed ID: 17444138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.
    Schneider M; Bartko P; Geller W; Dannenberg V; König A; Binder C; Goliasch G; Hengstenberg C; Binder T
    Int J Cardiovasc Imaging; 2021 Feb; 37(2):577-586. PubMed ID: 33029699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional echocardiographic evaluation of left ventricular ejection fraction by the ellipsoid single-plane algorithm: a reliable method for assessing low or very low ejection fraction values?
    Corrao S; Paterna S; Arnone S; Costa R; Amato V; Amico G; Scaglione R; Licata G
    Cardiology; 1995; 86(6):503-7. PubMed ID: 7585762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The apical long-axis rather than the two-chamber view should be used in combination with the four-chamber view for accurate assessment of left ventricular volumes and function.
    Nosir YF; Vletter WB; Boersma E; Frowijn R; Ten Cate FJ; Fioretti PM; Roelandt JR
    Eur Heart J; 1997 Jul; 18(7):1175-85. PubMed ID: 9243153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit and automatic ejection fraction assessment on 2D cardiac ultrasound with a deep learning-based approach.
    Moal O; Roger E; Lamouroux A; Younes C; Bonnet G; Moal B; Lafitte S
    Comput Biol Med; 2022 Jul; 146():105637. PubMed ID: 35617727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac point-of-care to cart-based ultrasound translation using constrained CycleGAN.
    Jafari MH; Girgis H; Van Woudenberg N; Moulson N; Luong C; Fung A; Balthazaar S; Jue J; Tsang M; Nair P; Gin K; Rohling R; Abolmaesumi P; Tsang T
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):877-886. PubMed ID: 32314226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paraplane analysis from precordial three-dimensional echocardiographic data sets for rapid and accurate quantification of left ventricular volume and function: a comparison with magnetic resonance imaging.
    Nosir YF; Stoker J; Kasprzak JD; Lequin MH; Dall'Agata A; Ten Cate FJ; Roelandt JR
    Am Heart J; 1999 Jan; 137(1):134-43. PubMed ID: 9878946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients.
    Bernard Y; Meneveau N; Boucher S; Magnin D; Anguenot T; Schiele F; Vuillemenot A; Bassand JP
    Echocardiography; 2001 Feb; 18(2):113-22. PubMed ID: 11262534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.