These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35433319)
1. Digital phenotyping in depression diagnostics: Integrating psychiatric and engineering perspectives. Kamath J; Leon Barriera R; Jain N; Keisari E; Wang B World J Psychiatry; 2022 Mar; 12(3):393-409. PubMed ID: 35433319 [TBL] [Abstract][Full Text] [Related]
2. Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. Zarate D; Stavropoulos V; Ball M; de Sena Collier G; Jacobson NC BMC Psychiatry; 2022 Jun; 22(1):421. PubMed ID: 35733121 [TBL] [Abstract][Full Text] [Related]
3. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
4. mPulse Mobile Sensing Model for Passive Detection of Impulsive Behavior: Exploratory Prediction Study. Wen H; Sobolev M; Vitale R; Kizer J; Pollak JP; Muench F; Estrin D JMIR Ment Health; 2021 Jan; 8(1):e25019. PubMed ID: 33502330 [TBL] [Abstract][Full Text] [Related]
5. Toward a Mobile Platform for Real-world Digital Measurement of Depression: User-Centered Design, Data Quality, and Behavioral and Clinical Modeling. Nickels S; Edwards MD; Poole SF; Winter D; Gronsbell J; Rozenkrants B; Miller DP; Fleck M; McLean A; Peterson B; Chen Y; Hwang A; Rust-Smith D; Brant A; Campbell A; Chen C; Walter C; Arean PA; Hsin H; Myers LJ; Marks WJ; Mega JL; Schlosser DA; Conrad AJ; Califf RM; Fromer M JMIR Ment Health; 2021 Aug; 8(8):e27589. PubMed ID: 34383685 [TBL] [Abstract][Full Text] [Related]
6. Digital Phenotyping With Mobile and Wearable Devices: Advanced Symptom Measurement in Child and Adolescent Depression. Sequeira L; Battaglia M; Perrotta S; Merikangas K; Strauss J J Am Acad Child Adolesc Psychiatry; 2019 Sep; 58(9):841-845. PubMed ID: 31445619 [TBL] [Abstract][Full Text] [Related]
7. Are student nurses ready for new technologies in mental health? Mixed-methods study. Bourla A; Mouchabac S; Ogorzelec L; Guinchard C; Ferreri F; Nurse Educ Today; 2020 Jan; 84():104240. PubMed ID: 31715472 [TBL] [Abstract][Full Text] [Related]
8. Ethical Development of Digital Phenotyping Tools for Mental Health Applications: Delphi Study. Martinez-Martin N; Greely HT; Cho MK JMIR Mhealth Uhealth; 2021 Jul; 9(7):e27343. PubMed ID: 34319252 [TBL] [Abstract][Full Text] [Related]
9. The Potential of Digital Phenotyping and Mobile Sensing for Psycho-Diagnostics of Internet Use Disorders. Montag C; Rumpf HJ Curr Addict Rep; 2021; 8(3):422-430. PubMed ID: 34258147 [TBL] [Abstract][Full Text] [Related]
10. Issues and opportunities of digital phenotyping: ecological momentary assessment and behavioral sensing in protecting the young from suicide. Pizzoli SFM; Monzani D; Conti L; Ferraris G; Grasso R; Pravettoni G Front Psychol; 2023; 14():1103703. PubMed ID: 37441331 [TBL] [Abstract][Full Text] [Related]
11. Digital biomarkers in depression: A systematic review and call for standardization and harmonization of feature engineering. Zierer C; Behrendt C; Lepach-Engelhardt AC J Affect Disord; 2024 Jul; 356():438-449. PubMed ID: 38583596 [TBL] [Abstract][Full Text] [Related]
12. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Radhakrishnan K; Kim MT; Burgermaster M; Brown RA; Xie B; Bray MS; Fournier CA Nurs Outlook; 2020; 68(5):548-559. PubMed ID: 32402392 [TBL] [Abstract][Full Text] [Related]
13. Prospective Follow-Up of Adolescents With and at Risk for Depression: Protocol and Methods of the Identifying Depression Early in Adolescence Risk Stratified Cohort Longitudinal Assessments. Piccin J; Viduani A; Buchweitz C; Pereira RB; Zimerman A; Amando GR; Cosenza V; Ferreira LZ; McMahon NAG; Melo RF; Richter D; Reckziegel FDS; Rohrsetzer F; Souza L; Tonon AC; Costa-Valle MT; Zajkowska Z; Araújo RM; Hauser TU; van Heerden A; Hidalgo MP; Kohrt BA; Mondelli V; Swartz JR; Fisher HL; Kieling C JAACAP Open; 2024 Jun; 2(2):145-159. PubMed ID: 38863682 [TBL] [Abstract][Full Text] [Related]
14. Personalised depression forecasting using mobile sensor data and ecological momentary assessment. Kathan A; Harrer M; Küster L; Triantafyllopoulos A; He X; Milling M; Gerczuk M; Yan T; Rajamani ST; Heber E; Grossmann I; Ebert DD; Schuller BW Front Digit Health; 2022; 4():964582. PubMed ID: 36465087 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Assessment of Stress and Stress Response Using Digital Phenotyping: A Study Protocol. Egger ST; Knorr M; Bobes J; Bernstein A; Seifritz E; Vetter S Front Digit Health; 2020; 2():544418. PubMed ID: 34713030 [No Abstract] [Full Text] [Related]
16. Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study. Asselbergs J; Ruwaard J; Ejdys M; Schrader N; Sijbrandij M; Riper H J Med Internet Res; 2016 Mar; 18(3):e72. PubMed ID: 27025287 [TBL] [Abstract][Full Text] [Related]