BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35433703)

  • 1. SuRVoS 2: Accelerating Annotation and Segmentation for Large Volumetric Bioimage Workflows Across Modalities and Scales.
    Pennington A; King ONF; Tun WM; Ho EML; Luengo I; Darrow MC; Basham M
    Front Cell Dev Biol; 2022; 10():842342. PubMed ID: 35433703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airway Cells 3D Reconstruction via Manual and Machine-Learning Aided Segmentation of Volume EM Datasets.
    Vijayakumaran A; Abuammar A; Medagedara O; Narayan K; Mennella V
    Methods Mol Biol; 2024; 2725():131-146. PubMed ID: 37856022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume Segmentation and Analysis of Biological Materials Using SuRVoS (Super-region Volume Segmentation) Workbench.
    Darrow MC; Luengo I; Basham M; Spink MC; Irvine S; French AP; Ashton AW; Duke EMH
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC.
    Padovani F; Mairhörmann B; Falter-Braun P; Lengefeld J; Schmoller KM
    BMC Biol; 2022 Aug; 20(1):174. PubMed ID: 35932043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blik is an extensible 3D visualisation tool for the annotation and analysis of cryo-electron tomography data.
    Gaifas L; Kirchner MA; Timmins J; Gutsche I
    PLoS Biol; 2024 Apr; 22(4):e3002447. PubMed ID: 38687779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SuRVoS: Super-Region Volume Segmentation workbench.
    Luengo I; Darrow MC; Spink MC; Sun Y; Dai W; He CY; Chiu W; Pridmore T; Ashton AW; Duke EMH; Basham M; French AP
    J Struct Biol; 2017 Apr; 198(1):43-53. PubMed ID: 28246039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
    Bitarafan A; Nikdan M; Baghshah MS
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2665-2672. PubMed ID: 33211667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VoDEx: a Python library for time annotation and management of volumetric functional imaging data.
    Nadtochiy A; Luu P; Fraser SE; Truong TV
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37699009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning.
    Philbrick KA; Weston AD; Akkus Z; Kline TL; Korfiatis P; Sakinis T; Kostandy P; Boonrod A; Zeinoddini A; Takahashi N; Erickson BJ
    J Digit Imaging; 2019 Aug; 32(4):571-581. PubMed ID: 31089974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suggestive annotation of brain MR images with gradient-guided sampling.
    Dai C; Wang S; Mo Y; Angelini E; Guo Y; Bai W
    Med Image Anal; 2022 Apr; 77():102373. PubMed ID: 35134636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks.
    Lu Q; Li Y; Ye C
    Med Image Anal; 2021 Aug; 72():102094. PubMed ID: 34004493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling annotator preference and stochastic annotation error for medical image segmentation.
    Liao Z; Hu S; Xie Y; Xia Y
    Med Image Anal; 2024 Feb; 92():103028. PubMed ID: 38070453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows.
    Rubens U; Mormont R; Paavolainen L; Bäcker V; Pavie B; Scholz LA; Michiels G; Maška M; Ünay D; Ball G; Hoyoux R; Vandaele R; Golani O; Stanciu SG; Sladoje N; Paul-Gilloteaux P; Marée R; Tosi S
    Patterns (N Y); 2020 Jun; 1(3):100040. PubMed ID: 33205108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale medical image annotation with crowd-powered algorithms.
    Heim E; Roß T; Seitel A; März K; Stieltjes B; Eisenmann M; Lebert J; Metzger J; Sommer G; Sauter AW; Schwartz FR; Termer A; Wagner F; Kenngott HG; Maier-Hein L
    J Med Imaging (Bellingham); 2018 Jul; 5(3):034002. PubMed ID: 30840724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extensible software platform for interdisciplinary cardiovascular imaging research.
    Huellebrand M; Messroghli D; Tautz L; Kuehne T; Hennemuth A
    Comput Methods Programs Biomed; 2020 Feb; 184():105277. PubMed ID: 31891904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing microtomography data with Python and the scikit-image library.
    Gouillart E; Nunez-Iglesias J; van der Walt S
    Adv Struct Chem Imaging; 2017; 2(1):18. PubMed ID: 29142808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.
    Rey-Villamizar N; Somasundar V; Megjhani M; Xu Y; Lu Y; Padmanabhan R; Trett K; Shain W; Roysam B
    Front Neuroinform; 2014; 8():39. PubMed ID: 24808857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VoDEx: a Python library for time annotation and management of volumetric functional imaging data.
    Nadtochiy A; Luu P; Fraser SE; Truong TV
    ArXiv; 2023 May; ():. PubMed ID: 37214133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.