These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35433841)

  • 1. Trajectory Generation for Flexible-Joint Space Manipulators.
    Carabis DS; Wen JT
    Front Robot AI; 2022; 9():687595. PubMed ID: 35433841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic Manipulation and Capture in Space: A Survey.
    Papadopoulos E; Aghili F; Ma O; Lampariello R
    Front Robot AI; 2021; 8():686723. PubMed ID: 34350212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation.
    Ashith Shyam RB; Hao Z; Montanaro U; Dixit S; Rathinam A; Gao Y; Neumann G; Fallah S
    Front Robot AI; 2021; 8():638849. PubMed ID: 34017860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point-to-point trajectory planning for space robots based on jerk constraints.
    Xiao P; Ju H; Li Q
    Rev Sci Instrum; 2021 Sep; 92(9):094501. PubMed ID: 34598527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission.
    Jaekel S; Lampariello R; Rackl W; De Stefano M; Oumer N; Giordano AM; Porges O; Pietras M; Brunner B; Ratti J; Muehlbauer Q; Thiel M; Estable S; Biesbroek R; Albu-Schaeffer A
    Front Robot AI; 2018; 5():100. PubMed ID: 33500979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel and distributed trajectory generation of redundant manipulators through cooperation and competition among subsystems.
    Tsuji T; Nakayama S; Ito K
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(3):498-509. PubMed ID: 18255888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Trajectory Planning of the Variable-Stiffness Flexible Manipulator Based on CADE Algorithm for Vibration Reduction Control.
    Cheng Q; Xu W; Liu Z; Hao X; Wang Y
    Front Bioeng Biotechnol; 2021; 9():766495. PubMed ID: 34692668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory Planning of Robot Manipulator Based on RBF Neural Network.
    Song Q; Li S; Bai Q; Yang J; Zhang A; Zhang X; Zhe L
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teleoperation and Visualization Interfaces for Remote Intervention in Space.
    Kazanzides P; Vagvolgyi BP; Pryor W; Deguet A; Leonard S; Whitcomb LL
    Front Robot AI; 2021; 8():747917. PubMed ID: 34926590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling a Controlled-Floating Space Robot for In-Space Services: A Beginner's Tutorial.
    Seddaoui A; Saaj CM; Nair MH
    Front Robot AI; 2021; 8():725333. PubMed ID: 35004863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring a Novel Multiple-Query Resistive Grid-Based Planning Method Applied to High-DOF Robotic Manipulators.
    Huerta-Chua J; Diaz-Arango G; Vazquez-Leal H; Flores-Mendez J; Moreno-Moreno M; Ambrosio-Lazaro RC; Hernandez-Mejia C
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance.
    Raigoza K; Sands T
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory Planning for Coal Gangue Sorting Robot Tracking Fast-Mass Target under Multiple Constraints.
    Wang P; Ma H; Zhang Y; Cao X; Wu X; Wei X; Zhou W
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Fully Actuated System Approach-Based Trajectory Tracking Control for Robot Manipulators.
    Tian G; Tan J; Li B; Duan G
    IEEE Trans Cybern; 2024 Oct; PP():. PubMed ID: 39378256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of six degree-of-freedom high-precision robotic phantom on commercial industrial robotic manipulator.
    Fujii F; Nonomura T; Shiinoki T
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34330110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.
    Moreno-Valenzuela J; González-Hernández L
    ISA Trans; 2011 Jan; 50(1):131-40. PubMed ID: 20800835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design engineering a walking robotic manipulator for in-space assembly missions.
    Nair MH; Rai MC; Poozhiyil M
    Front Robot AI; 2022; 9():995813. PubMed ID: 36313251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health care for deep space explorers.
    Thirsk RB
    Ann ICRP; 2020 Dec; 49(1_suppl):182-184. PubMed ID: 32734760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of Individual Characteristics with Teleoperation Performance.
    Pan D; Zhang Y; Li Z; Tian Z
    Aerosp Med Hum Perform; 2016 Sep; 87(9):772-80. PubMed ID: 27634696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.