These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3543387)

  • 1. Sonographic evaluation of platelet aggregate retention in a vortex within a simulated venous sinus.
    Machi J; Sigel B; Ramos JR
    J Ultrasound Med; 1986 Dec; 5(12):685-9. PubMed ID: 3543387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow through a venous valve and its implication for thrombus formation.
    Karino T; Motomiya M
    Thromb Res; 1984 Nov; 36(3):245-57. PubMed ID: 6515603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ultrasonic detection of platelet aggregates.
    Mahony C
    Thromb Res; 1987 Sep; 47(6):665-72. PubMed ID: 3317986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Venous valves in the legs: hemodynamic and biological problems and relationship to physiopathology].
    Boisseau MR
    J Mal Vasc; 1997 May; 22(2):122-7. PubMed ID: 9480331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of red blood cells on the ADP-induced aggregation of human platelets in flow through tubes.
    Bell DN; Spain S; Goldsmith HL
    Thromb Haemost; 1990 Feb; 63(1):112-21. PubMed ID: 2339347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow.
    Goldsmith HL; Kaufer ES; McIntosh FA
    Biorheology; 1995; 32(5):537-52. PubMed ID: 8541523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration.
    Bell DN; Spain S; Goldsmith HL
    Biophys J; 1989 Nov; 56(5):829-43. PubMed ID: 2605299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.
    Tandon P; Diamond SL
    Biophys J; 1997 Nov; 73(5):2819-35. PubMed ID: 9370476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) analysis of hemodynamics in valve-sparing aortic root repair with an anatomically shaped sinus prosthesis.
    Oechtering TH; Hons CF; Sieren M; Hunold P; Hennemuth A; Huellebrand M; Drexl J; Scharfschwerdt M; Richardt D; Sievers HH; Barkhausen J; Frydrychowicz A
    J Thorac Cardiovasc Surg; 2016 Aug; 152(2):418-427.e1. PubMed ID: 27423836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions.
    Guglielmini G; Appolloni V; Momi S; De Groot PG; Battiston M; De Marco L; Falcinelli E; Gresele P
    Thromb Haemost; 2016 Jan; 115(2):333-43. PubMed ID: 26510894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental venous thrombosis induced in dogs by electric stimulation of venous wall (author's transl)].
    Gafa M; Guadagni G; Lo G; Pouché A; Pezza V; Ovaleo Pandolfo E
    Ateneo Parmense Acta Biomed; 1975; 46(6):495-519. PubMed ID: 1222064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echocardiographic "smoke" is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces.
    Merino A; Hauptman P; Badimon L; Badimon JJ; Cohen M; Fuster V; Goldman M
    J Am Coll Cardiol; 1992 Dec; 20(7):1661-8. PubMed ID: 1452941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological properties of YM-57029, a novel platelet glycoprotein IIb/IIIa antagonist.
    Moritani Y; Sato K; Shigenaga T; Hisamichi N; Ichihara M; Akamatsu S; Suzuki Ki; Nii T; Kaku S; Kawasaki T; Matsumoto Y; Inagaki O; Tomioka K; Yanagisawa I
    Eur J Pharmacol; 2002 Mar; 439(1-3):43-52. PubMed ID: 11937091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet aggregation and activation under complex patterns of shear stress.
    Zhang JN; Bergeron AL; Yu Q; Sun C; McIntire LV; López JA; Dong JF
    Thromb Haemost; 2002 Nov; 88(5):817-21. PubMed ID: 12428100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling via P2Y12 may be critical for early stabilization of platelet aggregates.
    Speich HE; Bhal V; Houser KH; Caughran AT; Lands LT; Houng AK; Bäckstrom J; Enerbäck M; Reed GL; Jennings LK
    J Cardiovasc Pharmacol; 2014 Jun; 63(6):520-7. PubMed ID: 24477045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow and thrombosis.
    Goldsmith HL
    Thromb Diath Haemorrh; 1974 Sep; 32(1):35-48. PubMed ID: 4616424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic detection of platelet aggregation at variable shear rates.
    Machi J; Sigel B; Ramos JR; Justin JR; Feinberg H; LeBreton GC; Robertson AL
    Haemostasis; 1984; 14(6):473-9. PubMed ID: 6534820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of laser-light scattering and controlled shear in platelet aggregometry.
    Hubbell JA; Pohl PI; Wagner WR
    Thromb Haemost; 1991 May; 65(5):601-7. PubMed ID: 1871723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective induction of anti-inflammatory monocyte-platelet aggregates in a model of pulsatile blood flow at low shear rates.
    Takeda Y; Marumo M; Nara H; Feng ZG; Asao H; Wakabayashi I
    Platelets; 2016 Sep; 27(6):583-92. PubMed ID: 27078265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.