BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35434199)

  • 21. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
    Lira RB; Dimova R; Riske KA
    Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of Cell-Sized Liposomes Incorporating a β-Barrel-Structured Porin through Rehydration of a Phospholipid-Membrane Protein Dried Film.
    Tosaka T; Kamiya K
    ACS Omega; 2024 Feb; 9(5):5911-5918. PubMed ID: 38343955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles.
    Abucayon EG; Rao M; Matyas GR; Alving CR
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles.
    Valkenier H; López Mora N; Kros A; Davis AP
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2137-41. PubMed ID: 25556546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips.
    Li W; Wang Q; Yang Z; Wang W; Cao Y; Hu N; Luo H; Liao Y; Yang J
    Colloids Surf B Biointerfaces; 2016 Apr; 140():560-566. PubMed ID: 26628330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality.
    Carvalho K; Ramos L; Roy C; Picart C
    Biophys J; 2008 Nov; 95(9):4348-60. PubMed ID: 18502807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary Ion Mass Spectrometry of Single Giant Unilamellar Vesicles Reveals Compositional Variability.
    Grusky DS; Bhattacharya A; Boxer SG
    J Am Chem Soc; 2023 Dec; 145(50):27521-27530. PubMed ID: 38056605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Giant Unilamellar Vesicle Electroformation for Phosphatidylcholine/Sphingomyelin/Cholesterol Ternary Mixtures.
    Boban Z; Mardešić I; Subczynski WK; Jozić D; Raguz M
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer.
    Andra KK; Dorsey S; Royer CA; Menon AK
    J Biol Chem; 2018 Aug; 293(31):12248-12258. PubMed ID: 29903908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetrical labeling of giant phospholipid vesicles.
    Gomišček G; Arrigler V; Gros M; Zupančič M; Svetina S
    Pflugers Arch; 2000 Jan; 440(Suppl 1):R051-R052. PubMed ID: 28008479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins.
    Aden S; Snoj T; Anderluh G
    Methods Enzymol; 2021; 649():219-251. PubMed ID: 33712188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation.
    Witkowska A; Jablonski L; Jahn R
    Sci Rep; 2018 Jun; 8(1):9422. PubMed ID: 29930377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.