These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35434199)

  • 41. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions.
    Montes LR; Alonso A; Goñi FM; Bagatolli LA
    Biophys J; 2007 Nov; 93(10):3548-54. PubMed ID: 17704162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electroformation of giant vesicles from an inverse phase precursor.
    Mertins O; da Silveira NP; Pohlmann AR; Schröder AP; Marques CM
    Biophys J; 2009 Apr; 96(7):2719-26. PubMed ID: 19348754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies.
    Garten M; Aimon S; Bassereau P; Toombes GE
    J Vis Exp; 2015 Jan; (95):52281. PubMed ID: 25650630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability of giant unilamellar vesicles and large unilamellar vesicles of liquid-ordered phase membranes in the presence of Triton X-100.
    Tamba Y; Tanaka T; Yahagi T; Yamashita Y; Yamazaki M
    Biochim Biophys Acta; 2004 Nov; 1667(1):1-6. PubMed ID: 15533300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity.
    Baykal-Caglar E; Hassan-Zadeh E; Saremi B; Huang J
    Biochim Biophys Acta; 2012 Nov; 1818(11):2598-604. PubMed ID: 22652256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles.
    Papadopulos A; Vehring S; López-Montero I; Kutschenko L; Stöckl M; Devaux PF; Kozlov M; Pomorski T; Herrmann A
    J Biol Chem; 2007 May; 282(21):15559-68. PubMed ID: 17369612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of Giant Vesicles with Mixed Single-Tailed and Double-Tailed Lipids.
    Lowe LA; Wang A
    Methods Mol Biol; 2023; 2622():71-85. PubMed ID: 36781751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles.
    van Buren L; Koenderink GH; Martinez-Torres C
    ACS Synth Biol; 2023 Jan; 12(1):120-135. PubMed ID: 36508359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification of Giant Unilamellar Vesicle Fusion Products by High-Throughput Image Analysis.
    Caliari A; Hanczyc MM; Imai M; Xu J; Yomo T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy.
    Mora NL; Boyle AL; Kolck BJV; Rossen A; Pokorná Š; Koukalová A; Šachl R; Hof M; Kros A
    Sci Rep; 2020 Feb; 10(1):3087. PubMed ID: 32080270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results.
    Boban Z; Mardešić I; Subczynski WK; Raguz M
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alkylation converts riboflavin into an efficient photosensitizer of phospholipid membranes.
    Sosa MJ; Fonseca JL; Sakaya A; Urrutia MN; Petroselli G; Erra-Balsells R; Quindt MI; Bonesi SM; Cosa G; Vignoni M; Thomas AH
    Biochim Biophys Acta Biomembr; 2023 Jun; 1865(5):184155. PubMed ID: 37003545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles.
    Varnier A; Kermarrec F; Blesneac I; Moreau C; Liguori L; Lenormand JL; Picollet-D'hahan N
    J Membr Biol; 2010 Feb; 233(1-3):85-92. PubMed ID: 20135103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A protocol for mimicking lipid-mediated phase separation on the membrane using giant unilamellar vesicles.
    Zhu Y; Gao Y; Sun Q; Chen D
    STAR Protoc; 2022 Dec; 3(4):101709. PubMed ID: 36136754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cheap portable electroformed giant unilamellar vesicles preparation kit.
    Doğan Güzel F; Kaur J; Zendeh Z
    J Liposome Res; 2023 Jun; 33(2):183-188. PubMed ID: 36541743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ca-mediated electroformation of cell-sized lipid vesicles.
    Tao F; Yang P
    Sci Rep; 2015 May; 5():9839. PubMed ID: 25950604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Septin-based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles.
    Beber A; Alqabandi M; Prévost C; Viars F; Lévy D; Bassereau P; Bertin A; Mangenot S
    Cytoskeleton (Hoboken); 2019 Jan; 76(1):92-103. PubMed ID: 30070077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.