These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35434482)

  • 1. A review of hyperspectral image analysis techniques for plant disease detection and identif ication.
    Cheshkova AF
    Vavilovskii Zhurnal Genet Selektsii; 2022 Mar; 26(2):202-213. PubMed ID: 35434482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN).
    Wang D; Vinson R; Holmes M; Seibel G; Bechar A; Nof S; Tao Y
    Sci Rep; 2019 Mar; 9(1):4377. PubMed ID: 30867450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art.
    Mahlein AK; Kuska MT; Behmann J; Polder G; Walter A
    Annu Rev Phytopathol; 2018 Aug; 56():535-558. PubMed ID: 30149790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops.
    Fahey T; Pham H; Gardi A; Sabatini R; Stefanelli D; Goodwin I; Lamb DW
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications and Developments on the Use of Vibrational Spectroscopy Imaging for the Analysis, Monitoring and Characterisation of Crops and Plants.
    Cozzolino D; Roberts J
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27294902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale.
    Paulus S; Mahlein AK
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32815537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor-based phenotyping of above-ground plant-pathogen interactions.
    Tanner F; Tonn S; de Wit J; Van den Ackerveken G; Berger B; Plett D
    Plant Methods; 2022 Mar; 18(1):35. PubMed ID: 35313920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection.
    Behmann J; Acebron K; Emin D; Bennertz S; Matsubara S; Thomas S; Bohnenkamp D; Kuska MT; Jussila J; Salo H; Mahlein AK; Rascher U
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.
    Knauer U; Matros A; Petrovic T; Zanker T; Scott ES; Seiffert U
    Plant Methods; 2017; 13():47. PubMed ID: 28630643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress.
    Lowe A; Harrison N; French AP
    Plant Methods; 2017; 13():80. PubMed ID: 29051772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions.
    Berger K; Verrelst J; Féret JB; Wang Z; Wocher M; Strathmann M; Danner M; Mauser W; Hank T
    Remote Sens Environ; 2020 Jun; 242():111758. PubMed ID: 36082364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
    Mahlein AK
    Plant Dis; 2016 Feb; 100(2):241-251. PubMed ID: 30694129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants.
    Wahabzada M; Mahlein AK; Bauckhage C; Steiner U; Oerke EC; Kersting K
    Sci Rep; 2016 Mar; 6():22482. PubMed ID: 26957018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat.
    Liu H; Bruning B; Garnett T; Berger B
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Metabolomic Approaches Become a Tool for Improving Early Plant Disease Detection and Diagnosis with Modern Remote Sensing Methods? A Review.
    Terentev A; Dolzhenko V
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research advances in imaging technology for food safety and quality control].
    Deng Y; Wang X; Yang M; He M; Zhang F
    Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!
    Mahlein AK; Kuska MT; Thomas S; Wahabzada M; Behmann J; Rascher U; Kersting K
    Curr Opin Plant Biol; 2019 Aug; 50():156-162. PubMed ID: 31387067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Correction Methodology to Improve the Performance of a Low-Cost Hyperspectral Portable Snapshot Camera.
    Genangeli A; Avola G; Bindi M; Cantini C; Cellini F; Riggi E; Gioli B
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling.
    Reis Pereira M; Dos Santos FN; Tavares F; Cunha M
    Front Plant Sci; 2023; 14():1242201. PubMed ID: 37662158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.