These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35435552)

  • 1. A review on proliferation of artificial intelligence in wind energy forecasting and instrumentation management.
    Zhao L; Nazir MS; Nazir HMJ; Abdalla AN
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):43690-43709. PubMed ID: 35435552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of artificial intelligence in solar and wind energy resources: a strategy to deal with environmental pollution.
    Khan KI; Nasir A
    Environ Sci Pollut Res Int; 2023 May; 30(24):64845-64859. PubMed ID: 37097570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend.
    Pazikadin AR; Rifai D; Ali K; Malik MZ; Abdalla AN; Faraj MA
    Sci Total Environ; 2020 May; 715():136848. PubMed ID: 32040994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives.
    Msigwa G; Ighalo JO; Yap PS
    Sci Total Environ; 2022 Nov; 849():157755. PubMed ID: 35921924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarbonizing energy: Evaluating fossil fuel displacement by renewables in OECD countries.
    Karlilar Pata S; Balcilar M
    Environ Sci Pollut Res Int; 2024 May; 31(21):31304-31313. PubMed ID: 38630397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects.
    Saulat H; Khan MM; Aslam M; Chawla M; Rafiq S; Zafar F; Khan MM; Bokhari A; Jamil F; Bhutto AW; Bazmi AA
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34051-34073. PubMed ID: 33119799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance enhancement of short-term wind speed forecasting model using Realtime data.
    Ashraf M; Raza B; Arshad M; Khan BM; Zaidi SSH
    PLoS One; 2024; 19(5):e0302664. PubMed ID: 38820359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources.
    R Singh A; Kumar RS; Bajaj M; Khadse CB; Zaitsev I
    Sci Rep; 2024 Aug; 14(1):19207. PubMed ID: 39160194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefit Modeling and Analysis of Wind Power Generation under Social Energy Economy and Public Health.
    Liu Y; Abdul Karim Z; Khalid N; Said FF
    J Environ Public Health; 2022; 2022():5635853. PubMed ID: 35719856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empowering distribution system operators: A review of distributed energy resource forecasting techniques.
    Fose N; Singh AR; Krishnamurthy S; Ratshitanga M; Moodley P
    Heliyon; 2024 Aug; 10(15):e34800. PubMed ID: 39157304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.
    Mumtaz S; Khan L
    PLoS One; 2017; 12(3):e0173966. PubMed ID: 28329015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting renewable energy for environmental resilience through computational intelligence.
    Khan M; Al-Ammar EA; Naeem MR; Ko W; Choi HJ; Kang HK
    PLoS One; 2021; 16(8):e0256381. PubMed ID: 34415924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting.
    Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacity factors for electrical power generation from renewable and nonrenewable sources.
    Bolson N; Prieto P; Patzek T
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2205429119. PubMed ID: 36538483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable renewable energy penetration impact on productivity: A case study of poultry farming.
    Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É
    PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating an economic application of renewable generated hydrogen: A way forward for green economic performance and policy measures.
    Wu B; Zhai B; Mu H; Peng X; Wang C; Patwary AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):15144-15158. PubMed ID: 34628612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMD-based gray combined forecasting model - Application to long-term forecasting of wind power generation.
    Ran M; Huang J; Qian W; Zou T; Ji C
    Heliyon; 2023 Jul; 9(7):e18053. PubMed ID: 37496909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical assessment of small-scale wind power for residential use in Mexico: A Bayesian intelligence approach.
    Borunda M; de la Cruz J; Garduno-Ramirez R; Nicholson A
    PLoS One; 2020; 15(3):e0230122. PubMed ID: 32163479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacity and strategies of energy production from renewable sources in Arab countries until 2030: a review from renewable energy potentials to environmental issues.
    Dadashi Z; Mahmoudi A; Rashidi S
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):47837-47866. PubMed ID: 35522406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.