BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35435656)

  • 1. Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers.
    Krivina RA; Lindquist GA; Yang MC; Cook AK; Hendon CH; Motz AR; Capuano C; Ayers KE; Hutchison JE; Boettcher SW
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18261-18274. PubMed ID: 35435656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation.
    Krivina RA; Lindquist GA; Beaudoin SR; Stovall TN; Thompson WL; Twight LP; Marsh D; Grzyb J; Fabrizio K; Hutchison JE; Boettcher SW
    Adv Mater; 2022 Sep; 34(35):e2203033. PubMed ID: 35790033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis.
    Wan L; Liu J; Xu Z; Xu Q; Pang M; Wang P; Wang B
    Small; 2022 May; 18(21):e2200380. PubMed ID: 35491509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Anion Exchange Membrane Water Electrolyzers Enabled by Highly Gas Permeable and Dimensionally Stable Anion Exchange Ionomers.
    Liu F; Miyatake K; Tanabe M; Mahmoud AMA; Yadav V; Guo L; Wong CY; Xian F; Iwataki T; Uchida M; Kakinuma K
    Adv Sci (Weinh); 2024 Jun; ():e2402969. PubMed ID: 38828790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Ni-MoO
    Faid AY; Barnett AO; Seland F; Sunde S
    ACS Appl Energy Mater; 2021 Apr; 4(4):3327-3340. PubMed ID: 34056552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion Exchange Ionomers: Design Considerations and Recent Advances - An Electrochemical Perspective.
    Favero S; Stephens IEL; Titirci MM
    Adv Mater; 2024 Feb; 36(8):e2308238. PubMed ID: 37891006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline Materials and Operation.
    Lindquist GA; Oener SZ; Krivina R; Motz AR; Keane A; Capuano C; Ayers KE; Boettcher SW
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51917-51924. PubMed ID: 34374278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of Ni-Fe-Layered Double Hydroxide Under Long-Term Operation in AEM Water Electrolysis.
    Galkina I; Faid AY; Jiang W; Scheepers F; Borowski P; Sunde S; Shviro M; Lehnert W; Mechler AK
    Small; 2024 Jun; 20(26):e2311047. PubMed ID: 38269475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane Water Electrolyzers.
    Jeon SS; Lim J; Kang PW; Lee JW; Kang G; Lee H
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37179-37186. PubMed ID: 34251792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer.
    Li D; Matanovic I; Lee AS; Park EJ; Fujimoto C; Chung HT; Kim YS
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9696-9701. PubMed ID: 30811171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion-exchange membrane water electrolyzers and fuel cells.
    Yang Y; Li P; Zheng X; Sun W; Dou SX; Ma T; Pan H
    Chem Soc Rev; 2022 Nov; 51(23):9620-9693. PubMed ID: 36345857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoindolinium Groups as Stable Anion Conductors for Anion-Exchange Membrane Fuel Cells and Electrolyzers.
    Aggarwal K; Gjineci N; Kaushansky A; Bsoul S; Douglin JC; Li S; Salam I; Aharonovich S; Varcoe JR; Dekel DR; Diesendruck CE
    ACS Mater Au; 2022 May; 2(3):367-373. PubMed ID: 36855387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and Strategies of Anion Exchange Membranes in Hydrogen-electricity Energy Conversion Devices.
    Li J; Liu C; Ge J; Xing W; Zhu J
    Chemistry; 2023 May; 29(26):e202203173. PubMed ID: 36626348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion-Exchange Membrane Water Electrolyzers.
    Du N; Roy C; Peach R; Turnbull M; Thiele S; Bock C
    Chem Rev; 2022 Jul; 122(13):11830-11895. PubMed ID: 35442645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Efficiency Anion-Exchange Membrane Water Electrolyzer Enabled by Ternary Layered Double Hydroxide Anode.
    Lee J; Jung H; Park YS; Woo S; Yang J; Jang MJ; Jeong J; Kwon N; Lim B; Han JW; Choi SM
    Small; 2021 Jul; 17(28):e2100639. PubMed ID: 34081402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionomer degradation in catalyst layers of anion exchange membrane fuel cells.
    Li Q; Hu M; Ge C; Yang Y; Xiao L; Zhuang L; Abruña HD
    Chem Sci; 2023 Oct; 14(38):10429-10434. PubMed ID: 37800009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers.
    Tang J; Su C; Shao Z
    Exploration (Beijing); 2024 Feb; 4(1):20220112. PubMed ID: 38854490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Stainless Steel Oxide Layers through Potential Cycling─AEM Water Electrolysis Free of Critical Raw Materials.
    Ferriday TB; Nuggehalli Sampathkumar S; Mensi MD; Middleton PH; Van Herle J; Kolhe ML
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29963-29978. PubMed ID: 38809814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anionic Exchange Membrane for Photo-Electrolysis Application.
    Lo Vecchio C; Carbone A; Trocino S; Gatto I; Patti A; Baglio V; Aricò AS
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33333931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.