These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35435659)

  • 1. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
    Bhamidimarri SP; Prajapati JD; van den Berg B; Winterhalter M; Kleinekathöfer U
    Biophys J; 2016 Feb; 110(3):600-611. PubMed ID: 26840725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-Dependent Transport of Neutral Solutes through Nanopores: A Molecular View.
    Prajapati JD; Kleinekathöfer U
    J Phys Chem B; 2020 Nov; 124(47):10718-10731. PubMed ID: 33175522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type.
    Piguet F; Discala F; Breton MF; Pelta J; Bacri L; Oukhaled A
    J Phys Chem Lett; 2014 Dec; 5(24):4362-7. PubMed ID: 26273988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow reversal outside glass nanopores.
    Laohakunakorn N; Thacker VV; Muthukumar M; Keyser UF
    Nano Lett; 2015 Jan; 15(1):695-702. PubMed ID: 25490120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field effect regulation of DNA translocation through a nanopore.
    Ai Y; Liu J; Zhang B; Qian S
    Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate manipulation of DNA capture into nanopores.
    He Y; Tsutsui M; Fan C; Taniguchi M; Kawai T
    ACS Nano; 2011 Oct; 5(10):8391-7. PubMed ID: 21928773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore.
    Leong IW; Tsutsui M; Yokota K; Taniguchi M
    Anal Chem; 2021 Dec; 93(49):16700-16708. PubMed ID: 34860500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane.
    Yang Q; Su B; Wang Y; Wu W
    Electrophoresis; 2019 Aug; 40(16-17):2149-2156. PubMed ID: 30916400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid-state nanopore.
    Saharia J; Bandara YMNDY; Kim MJ
    Electrophoresis; 2022 Mar; 43(5-6):785-792. PubMed ID: 35020223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating DNA translocation through functionalized soft nanopores.
    Yeh LH; Zhang M; Qian S; Hsu JP
    Nanoscale; 2012 Apr; 4(8):2685-93. PubMed ID: 22422141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rectified and Salt Concentration Dependent Wetting of Hydrophobic Nanopores.
    Polster JW; Aydin F; de Souza JP; Bazant MZ; Pham TA; Siwy ZS
    J Am Chem Soc; 2022 Jul; 144(26):11693-11705. PubMed ID: 35729706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.