These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35435904)

  • 1. Using Next Generation Sequencing to Identify Mutations Associated with Repair of a CAS9-induced Double Strand Break Near the CD4 Promoter.
    Hu C; Doerksen T; Bugbee T; Wallace NA; Palinski R
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies.
    Liu Y; Cottle WT; Ha T
    Trends Genet; 2023 Jul; 39(7):560-574. PubMed ID: 36967246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells.
    Wong N; John S; Nussenzweig A; Canela A
    Methods Mol Biol; 2021; 2153():9-31. PubMed ID: 32840769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Targeted and Tuneable DNA Damage Tool Using CRISPR/Cas9.
    Emmanouilidis I; Fili N; Cook AW; Hari-Gupta Y; Dos Santos Á; Wang L; Martin-Fernandez ML; Ellis PJI; Toseland CP
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing Heterochromatic DNA Double Strand Break (DSB) Repair in Response to Ionizing Radiation.
    Klement K; Goodarzi AA
    Methods Mol Biol; 2017; 1599():303-315. PubMed ID: 28477128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
    Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S
    G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-strand break toxicity is chromatin context independent.
    Friskes A; Koob L; Krenning L; Severson TM; Koeleman ES; Vergara X; Schubert M; van den Berg J; Evers B; Manjón AG; Joosten S; Kim Y; Zwart W; Medema RH
    Nucleic Acids Res; 2022 Sep; 50(17):9930-9947. PubMed ID: 36107780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos.
    Bekaert B; Boel A; Rybouchkin A; Cosemans G; Declercq S; Chuva de Sousa Lopes SM; Parrington J; Stoop D; Coucke P; Menten B; Heindryckx B
    J Assist Reprod Genet; 2024 Jun; 41(6):1605-1617. PubMed ID: 38557805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of heat-sensitive clustered damaged DNA sites is independent of double-strand break repair.
    Abramenkovs A; Stenerlöw B
    PLoS One; 2018; 13(12):e0209594. PubMed ID: 30592737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
    Cho SW; Kim S; Kim Y; Kweon J; Kim HS; Bae S; Kim JS
    Genome Res; 2014 Jan; 24(1):132-41. PubMed ID: 24253446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess single-stranded DNA inhibits meiotic double-strand break repair.
    Johnson R; Borde V; Neale MJ; Bishop-Bailey A; North M; Harris S; Nicolas A; Goldman AS
    PLoS Genet; 2007 Nov; 3(11):e223. PubMed ID: 18081428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.
    Yoder KE; Bundschuh R
    Sci Rep; 2016 Jul; 6():29530. PubMed ID: 27404981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artemis is required to improve the accuracy of repair of double-strand breaks with 5'-blocked termini generated from non-DSB-clustered lesions.
    Malyarchuk S; Castore R; Shi R; Harrison L
    Mutagenesis; 2013 May; 28(3):357-66. PubMed ID: 23448902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the genetic landscape of DNA double-strand break repair.
    Hussmann JA; Ling J; Ravisankar P; Yan J; Cirincione A; Xu A; Simpson D; Yang D; Bothmer A; Cotta-Ramusino C; Weissman JS; Adamson B
    Cell; 2021 Oct; 184(22):5653-5669.e25. PubMed ID: 34672952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.