BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35436041)

  • 1. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica.
    Liu X; Cui Z; Su T; Lu X; Hou J; Qi Q
    Microb Biotechnol; 2022 Aug; 15(8):2223-2234. PubMed ID: 35436041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica.
    Wong L; Holdridge B; Engel J; Xu P
    Methods Mol Biol; 2019; 1927():155-177. PubMed ID: 30788791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineering of oleaginous yeast Yarrowia lipolytica for lycopene production.
    Ye RW; Sharpe PL; Zhu Q
    Methods Mol Biol; 2012; 898():153-9. PubMed ID: 22711123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system.
    Shi TQ; Huang H; Kerkhoven EJ; Ji XJ
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of YALIcloneHR toolkit for Yarrowia lipolytica combined with Golden Gate and CRISPR technology.
    Shen Q; Yan F; Li YW; Wang J; Ji J; Yan WX; He DC; Song P; Shi TQ
    Biotechnol Lett; 2024 Feb; 46(1):37-46. PubMed ID: 38064043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica.
    Cui Z; Zheng H; Zhang J; Jiang Z; Zhu Z; Liu X; Qi Q; Hou J
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452022
    [No Abstract]   [Full Text] [Related]  

  • 9. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.
    Schwartz C; Shabbir-Hussain M; Frogue K; Blenner M; Wheeldon I
    ACS Synth Biol; 2017 Mar; 6(3):402-409. PubMed ID: 27989123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biology tools for engineering Yarrowia lipolytica.
    Larroude M; Rossignol T; Nicaud JM; Ledesma-Amaro R
    Biotechnol Adv; 2018 Dec; 36(8):2150-2164. PubMed ID: 30315870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica.
    Cui Z; Jiang X; Zheng H; Qi Q; Hou J
    Biotechnol Bioeng; 2019 Feb; 116(2):354-363. PubMed ID: 30418662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of synthetic biology tools in Yarrowia lipolytica.
    Cao L; Li J; Yang Z; Hu X; Wang P
    World J Microbiol Biotechnol; 2023 Mar; 39(5):129. PubMed ID: 36944859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica.
    Zhang XK; Nie MY; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2019 Jan; 289():46-54. PubMed ID: 30448359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica.
    Zhang XK; Wang DN; Chen J; Liu ZJ; Wei LJ; Hua Q
    Biotechnol Lett; 2020 Jun; 42(6):945-956. PubMed ID: 32090297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica.
    Lupish B; Hall J; Schwartz C; Ramesh A; Morrison C; Wheeldon I
    Biotechnol Bioeng; 2022 Dec; 119(12):3623-3631. PubMed ID: 36042688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica.
    Matthäus F; Ketelhot M; Gatter M; Barth G
    Appl Environ Microbiol; 2014 Mar; 80(5):1660-9. PubMed ID: 24375130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
    Gao S; Tong Y; Wen Z; Zhu L; Ge M; Chen D; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1085-93. PubMed ID: 27349768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.